Seurat中AggregateExpression函数在组间差异分析中的应用
2025-07-01 06:30:35作者:晏闻田Solitary
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。当我们需要比较不同组别(如肿瘤vs正常组织)之间的基因表达差异时,AggregateExpression函数提供了一种有效的"伪批量"分析方法。本文将详细介绍如何正确使用AggregateExpression进行组间比较分析。
核心问题
许多用户在尝试使用AggregateExpression进行组间比较时会遇到两个常见误区:
- 直接按组别(如"肿瘤"和"正常")聚合所有细胞
- 忽略样本ID中的特殊字符(如下划线)导致后续分析失败
正确使用流程
1. 数据预处理
首先需要对单细胞数据进行标准化处理:
object_norm <- NormalizeData(OBJECT,
normalization.method = "LogNormalize",
assay = "RNA")
2. 样本级聚合表达
关键步骤是按样本ID而非直接按组别进行聚合:
seurat_aggregated <- AggregateExpression(
object = object_norm,
group.by = "SampleID", # 按样本ID聚合
assays = "RNA",
slot = "data",
return.seurat = TRUE
)
3. 处理样本ID特殊字符
Seurat会自动将下划线(_)转换为连字符(-),需要确保后续分析使用转换后的ID:
# 修正样本ID中的特殊字符
colnames(seurat_aggregated) <- gsub("_", "-", colnames(seurat_aggregated))
4. 整合元数据
聚合表达数据后,需要将样本信息与组别信息合并:
# 聚合元数据
agg_metadata <- aggregate(object_norm@meta.data,
by = list(Sample = object_norm$SampleID),
FUN = unique)
# 仅保留必要列
agg_metadata <- agg_metadata[, c("Sample", "Group")]
# 合并元数据
seurat_aggregated <- AddMetaData(seurat_aggregated,
metadata = agg_metadata,
col.name = c("Sample", "Group"))
5. 连接数据层
确保所有数据层正确连接:
seurat_aggregated <- JoinLayers(seurat_aggregated)
6. 执行差异表达分析
最后进行组间差异分析:
Idents(seurat_aggregated) <- "Group"
markers <- FindMarkers(seurat_aggregated,
ident.1 = "tumor",
ident.2 = "normal",
assay = "RNA",
slot = "data",
test.use = "wilcox")
注意事项
-
样本ID处理:特别注意样本ID中的特殊字符,Seurat会自动转换下划线为连字符
-
聚合层级:应先按样本ID而非直接按组别聚合,保留样本层面的变异信息
-
元数据整合:确保聚合后的表达矩阵与元数据正确对应
-
数据层连接:使用JoinLayers确保数据层连接正确
技术原理
AggregateExpression函数通过将多个细胞的表达值聚合(默认求和)来创建"伪批量"样本。这种方法:
- 减少技术变异的影响
- 增加统计检验的效力
- 保留生物样本间的变异
在组间比较中,先按生物样本聚合再比较组别,更符合实验设计原则,能够正确评估组间差异的显著性。
总结
正确使用Seurat的AggregateExpression函数进行组间比较需要注意聚合层级、样本ID处理和元数据整合等关键步骤。按照本文介绍的流程,研究人员可以有效地进行肿瘤与正常组织等组间的差异表达分析,获得可靠的生物学发现。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648