Seurat中AggregateExpression函数在组间差异分析中的应用
2025-07-01 19:43:29作者:晏闻田Solitary
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。当我们需要比较不同组别(如肿瘤vs正常组织)之间的基因表达差异时,AggregateExpression函数提供了一种有效的"伪批量"分析方法。本文将详细介绍如何正确使用AggregateExpression进行组间比较分析。
核心问题
许多用户在尝试使用AggregateExpression进行组间比较时会遇到两个常见误区:
- 直接按组别(如"肿瘤"和"正常")聚合所有细胞
- 忽略样本ID中的特殊字符(如下划线)导致后续分析失败
正确使用流程
1. 数据预处理
首先需要对单细胞数据进行标准化处理:
object_norm <- NormalizeData(OBJECT,
normalization.method = "LogNormalize",
assay = "RNA")
2. 样本级聚合表达
关键步骤是按样本ID而非直接按组别进行聚合:
seurat_aggregated <- AggregateExpression(
object = object_norm,
group.by = "SampleID", # 按样本ID聚合
assays = "RNA",
slot = "data",
return.seurat = TRUE
)
3. 处理样本ID特殊字符
Seurat会自动将下划线(_)转换为连字符(-),需要确保后续分析使用转换后的ID:
# 修正样本ID中的特殊字符
colnames(seurat_aggregated) <- gsub("_", "-", colnames(seurat_aggregated))
4. 整合元数据
聚合表达数据后,需要将样本信息与组别信息合并:
# 聚合元数据
agg_metadata <- aggregate(object_norm@meta.data,
by = list(Sample = object_norm$SampleID),
FUN = unique)
# 仅保留必要列
agg_metadata <- agg_metadata[, c("Sample", "Group")]
# 合并元数据
seurat_aggregated <- AddMetaData(seurat_aggregated,
metadata = agg_metadata,
col.name = c("Sample", "Group"))
5. 连接数据层
确保所有数据层正确连接:
seurat_aggregated <- JoinLayers(seurat_aggregated)
6. 执行差异表达分析
最后进行组间差异分析:
Idents(seurat_aggregated) <- "Group"
markers <- FindMarkers(seurat_aggregated,
ident.1 = "tumor",
ident.2 = "normal",
assay = "RNA",
slot = "data",
test.use = "wilcox")
注意事项
-
样本ID处理:特别注意样本ID中的特殊字符,Seurat会自动转换下划线为连字符
-
聚合层级:应先按样本ID而非直接按组别聚合,保留样本层面的变异信息
-
元数据整合:确保聚合后的表达矩阵与元数据正确对应
-
数据层连接:使用JoinLayers确保数据层连接正确
技术原理
AggregateExpression函数通过将多个细胞的表达值聚合(默认求和)来创建"伪批量"样本。这种方法:
- 减少技术变异的影响
- 增加统计检验的效力
- 保留生物样本间的变异
在组间比较中,先按生物样本聚合再比较组别,更符合实验设计原则,能够正确评估组间差异的显著性。
总结
正确使用Seurat的AggregateExpression函数进行组间比较需要注意聚合层级、样本ID处理和元数据整合等关键步骤。按照本文介绍的流程,研究人员可以有效地进行肿瘤与正常组织等组间的差异表达分析,获得可靠的生物学发现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
321
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
Ascend Extension for PyTorch
Python
157
179
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
641
251
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
244
86
暂无简介
Dart
610
136
React Native鸿蒙化仓库
JavaScript
239
311
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.04 K