Seurat中AggregateExpression函数在组间差异分析中的应用
2025-07-01 19:16:59作者:晏闻田Solitary
概述
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。当我们需要比较不同组别(如肿瘤vs正常组织)之间的基因表达差异时,AggregateExpression函数提供了一种有效的"伪批量"分析方法。本文将详细介绍如何正确使用AggregateExpression进行组间比较分析。
核心问题
许多用户在尝试使用AggregateExpression进行组间比较时会遇到两个常见误区:
- 直接按组别(如"肿瘤"和"正常")聚合所有细胞
- 忽略样本ID中的特殊字符(如下划线)导致后续分析失败
正确使用流程
1. 数据预处理
首先需要对单细胞数据进行标准化处理:
object_norm <- NormalizeData(OBJECT,
normalization.method = "LogNormalize",
assay = "RNA")
2. 样本级聚合表达
关键步骤是按样本ID而非直接按组别进行聚合:
seurat_aggregated <- AggregateExpression(
object = object_norm,
group.by = "SampleID", # 按样本ID聚合
assays = "RNA",
slot = "data",
return.seurat = TRUE
)
3. 处理样本ID特殊字符
Seurat会自动将下划线(_)转换为连字符(-),需要确保后续分析使用转换后的ID:
# 修正样本ID中的特殊字符
colnames(seurat_aggregated) <- gsub("_", "-", colnames(seurat_aggregated))
4. 整合元数据
聚合表达数据后,需要将样本信息与组别信息合并:
# 聚合元数据
agg_metadata <- aggregate(object_norm@meta.data,
by = list(Sample = object_norm$SampleID),
FUN = unique)
# 仅保留必要列
agg_metadata <- agg_metadata[, c("Sample", "Group")]
# 合并元数据
seurat_aggregated <- AddMetaData(seurat_aggregated,
metadata = agg_metadata,
col.name = c("Sample", "Group"))
5. 连接数据层
确保所有数据层正确连接:
seurat_aggregated <- JoinLayers(seurat_aggregated)
6. 执行差异表达分析
最后进行组间差异分析:
Idents(seurat_aggregated) <- "Group"
markers <- FindMarkers(seurat_aggregated,
ident.1 = "tumor",
ident.2 = "normal",
assay = "RNA",
slot = "data",
test.use = "wilcox")
注意事项
-
样本ID处理:特别注意样本ID中的特殊字符,Seurat会自动转换下划线为连字符
-
聚合层级:应先按样本ID而非直接按组别聚合,保留样本层面的变异信息
-
元数据整合:确保聚合后的表达矩阵与元数据正确对应
-
数据层连接:使用JoinLayers确保数据层连接正确
技术原理
AggregateExpression函数通过将多个细胞的表达值聚合(默认求和)来创建"伪批量"样本。这种方法:
- 减少技术变异的影响
- 增加统计检验的效力
- 保留生物样本间的变异
在组间比较中,先按生物样本聚合再比较组别,更符合实验设计原则,能够正确评估组间差异的显著性。
总结
正确使用Seurat的AggregateExpression函数进行组间比较需要注意聚合层级、样本ID处理和元数据整合等关键步骤。按照本文介绍的流程,研究人员可以有效地进行肿瘤与正常组织等组间的差异表达分析,获得可靠的生物学发现。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869