Pose Residual Network PyTorch 项目教程
2024-10-10 07:18:05作者:曹令琨Iris
1. 项目目录结构及介绍
pose-residual-network-pytorch/
├── checkpoint/
├── data/
│ └── coco.sh
├── src/
│ ├── requirements.txt
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── opt.py
├── test.py
└── train.py
目录结构介绍
- checkpoint/: 用于存放训练过程中的模型检查点文件。
- data/: 包含数据集相关的脚本,如
coco.sh
用于下载 COCO 数据集。 - src/: 包含项目的源代码和依赖文件
requirements.txt
。 - .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- opt.py: 项目的配置文件,包含训练和测试的参数设置。
- test.py: 项目的测试文件,用于加载预训练模型并进行测试。
- train.py: 项目的训练文件,用于启动训练过程。
2. 项目的启动文件介绍
train.py
train.py
是项目的启动文件之一,用于启动训练过程。以下是该文件的主要功能:
- 训练模型: 通过调用
train.py
文件,可以开始训练 Pose Residual Network 模型。 - 参数配置: 训练过程中所需的参数可以通过
opt.py
文件进行配置。 - 数据加载: 使用 COCO 数据集进行训练,数据集的下载和处理由
data/coco.sh
脚本完成。
使用方法
python train.py
3. 项目的配置文件介绍
opt.py
opt.py
是项目的配置文件,包含了训练和测试过程中所需的参数设置。以下是该文件的主要内容:
- 训练参数: 包括学习率、批量大小、训练轮数等。
- 数据路径: 指定数据集的路径。
- 模型参数: 包括模型的结构参数、损失函数等。
配置示例
# opt.py 文件中的部分配置示例
class Opt:
def __init__(self):
self.lr = 0.001 # 学习率
self.batch_size = 32 # 批量大小
self.num_epochs = 100 # 训练轮数
self.data_dir = 'data/coco' # 数据集路径
self.checkpoint_dir = 'checkpoint' # 检查点保存路径
使用方法
在 train.py
或 test.py
中导入 opt.py
文件,并使用其中的配置参数。
from opt import Opt
opt = Opt()
print(opt.lr) # 输出学习率
通过以上步骤,您可以顺利地启动和配置 Pose Residual Network PyTorch 项目。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0102Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
22
6

openGauss kernel ~ openGauss is an open source relational database management system
C++
138
188

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
94
15

React Native鸿蒙化仓库
C++
187
266

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
894
529

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
372
387

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
337
1.11 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
401
377