Pose Residual Network PyTorch 项目教程
2024-10-10 23:54:38作者:曹令琨Iris
1. 项目目录结构及介绍
pose-residual-network-pytorch/
├── checkpoint/
├── data/
│ └── coco.sh
├── src/
│ ├── requirements.txt
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
├── opt.py
├── test.py
└── train.py
目录结构介绍
- checkpoint/: 用于存放训练过程中的模型检查点文件。
- data/: 包含数据集相关的脚本,如
coco.sh用于下载 COCO 数据集。 - src/: 包含项目的源代码和依赖文件
requirements.txt。 - .gitignore: Git 忽略文件,指定哪些文件或目录不需要被版本控制。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- opt.py: 项目的配置文件,包含训练和测试的参数设置。
- test.py: 项目的测试文件,用于加载预训练模型并进行测试。
- train.py: 项目的训练文件,用于启动训练过程。
2. 项目的启动文件介绍
train.py
train.py 是项目的启动文件之一,用于启动训练过程。以下是该文件的主要功能:
- 训练模型: 通过调用
train.py文件,可以开始训练 Pose Residual Network 模型。 - 参数配置: 训练过程中所需的参数可以通过
opt.py文件进行配置。 - 数据加载: 使用 COCO 数据集进行训练,数据集的下载和处理由
data/coco.sh脚本完成。
使用方法
python train.py
3. 项目的配置文件介绍
opt.py
opt.py 是项目的配置文件,包含了训练和测试过程中所需的参数设置。以下是该文件的主要内容:
- 训练参数: 包括学习率、批量大小、训练轮数等。
- 数据路径: 指定数据集的路径。
- 模型参数: 包括模型的结构参数、损失函数等。
配置示例
# opt.py 文件中的部分配置示例
class Opt:
def __init__(self):
self.lr = 0.001 # 学习率
self.batch_size = 32 # 批量大小
self.num_epochs = 100 # 训练轮数
self.data_dir = 'data/coco' # 数据集路径
self.checkpoint_dir = 'checkpoint' # 检查点保存路径
使用方法
在 train.py 或 test.py 中导入 opt.py 文件,并使用其中的配置参数。
from opt import Opt
opt = Opt()
print(opt.lr) # 输出学习率
通过以上步骤,您可以顺利地启动和配置 Pose Residual Network PyTorch 项目。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895