A2J 项目使用教程
1. 项目介绍
A2J(Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation from a Single Depth Image)是一个用于从单张深度图像中进行3D关节姿态估计的网络。该项目在ICCV 2019上发表,提出了一种简单而有效的方法,称为A2J,用于从单张深度图像中估计手部和人体的3D姿态。A2J在5个数据集上的广泛评估证明了其优越性。
2. 项目快速启动
2.1 环境准备
A2J项目在Ubuntu 16.04环境下测试,使用NVIDIA 1080Ti GPU,支持Pytorch 0.4.1和Pytorch 1.2版本(Pytorch 1.0/1.1版本也应该可以工作)。
2.2 克隆项目
首先,克隆A2J项目的代码库到本地:
git clone https://github.com/zhangboshen/A2J.git
2.3 下载预训练模型
下载预训练模型文件,可以从以下链接获取:
2.4 数据准备
下载所需的数据集,包括:
- NYU Hand Pose Dataset
- ICVL Hand Pose Dataset
- HANDS2017 Hand Pose Dataset
- ITOP Body Pose Dataset
- K2HPD Body Pose Dataset
将数据集转换为.mat文件格式,可以使用data_preprocess.py脚本进行处理。
2.5 运行测试
在src文件夹中,运行以下命令以测试模型:
python hands2017.py
3. 应用案例和最佳实践
3.1 手部姿态估计
A2J在HANDS2019 3D手部姿态估计挑战赛中取得了第二名的成绩。通过使用A2J,可以有效地从单张深度图像中估计手部的3D姿态。
3.2 人体姿态估计
除了手部姿态估计,A2J还可以应用于人体姿态估计。通过调整模型参数和数据集,A2J可以适应不同的人体姿态估计任务。
4. 典型生态项目
4.1 V2V-PoseNet
V2V-PoseNet是一个用于3D人体姿态估计的项目,与A2J类似,它也从单张深度图像中估计人体的3D姿态。V2V-PoseNet提供了预计算的中心文件,这些文件对A2J的工作非常有帮助。
4.2 Awesome Hand Pose Estimation
Awesome Hand Pose Estimation是一个收集了各种手部姿态估计方法的项目,其中包括A2J。通过比较不同方法的性能,可以更好地理解A2J在手部姿态估计中的优势。
通过以上步骤,您可以快速上手并使用A2J项目进行3D姿态估计。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00