首页
/ 探索视觉与语言适应的新篇章:VL-Adapter

探索视觉与语言适应的新篇章:VL-Adapter

2024-05-30 18:19:06作者:庞队千Virginia

项目简介

VL-Adapter 是一个创新的开源项目,由 Yi-Lin Sung, Jaemin Cho 和 Mohit Bansal 联合开发。它主要关注在视觉和语言任务中实现高效参数转移学习的技术。这个项目基于他们的论文 "VL-Adapter: 参数高效的跨模态任务迁移"(CVPR 2022)。通过引入适配器架构,VL-Adapter 可以在极小的额外参数开销下,达到甚至超过整个模型微调的性能。

VL-Adapter 概览

项目技术分析

VL-Adapter 引入了一种新的权重共享技术,使得只训练 4.18% 的图像文本任务总参数或 3.39% 的视频文本任务总参数就能获得媲美全模型微调的效果。这个框架允许在多个不同的任务上进行统一的多任务设置评估,包括 VQAv2、GQA、NLVR2 和 MSCOCO 图像标题生成等图像文本任务,以及 TVQA、How2QA、TVC 和 YC2C 等视频文本任务。

应用案例

无论是在学术研究还是实际应用中,VL-Adapter 都有广泛的应用场景。例如,研究人员可以利用它来探索更有效的跨模态预训练模型在下游任务上的表现,而开发者则可以把它集成到自己的AI系统中,以处理复杂的视觉与语言交互问题,如图像描述、问答系统或视频理解,同时降低计算资源的需求。

项目特点

  1. 参数效率高:使用适配器架构,在保持高性能的同时显著减少了所需的参数数量。
  2. 多任务兼容:支持多种视觉与语言任务,包括图像文本和视频文本。
  3. 易于部署:提供清晰的代码结构,方便用户快速理解和复现实验。
  4. 全面的基准测试:覆盖了多个主流的视觉与语言基准数据集,验证了方法的有效性。

安装与运行

要开始使用 VL-Adapter,首先创建一个 Python 环境并按照提供的 README 文件安装依赖项和下载所需模型。之后,可以通过提供的脚本在各种任务上运行不同的方法,包括完整的微调、单个适配器、多适配器,以及 Hyperformer、Compacter 和 Prompt-tuning 等其他方法。

总结来说,VL-Adapter 为跨模态任务的学习带来了革新,它的出色效果和高效特性使其成为任何对视觉与语言理解感兴趣的开发者的理想选择。如果你正在寻找一种既能节省计算资源又能保持高性能的方法,那么不妨尝试一下 VL-Adapter 吧!记得引用他们的论文以支持作者的工作哦。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1