Helm中基于节点亲和性部署多DaemonSet的最佳实践
2025-05-06 10:12:18作者:廉彬冶Miranda
概述
在Kubernetes集群管理实践中,我们经常需要根据不同的节点亲和性(Node Affinity)规则部署多个DaemonSet资源。这些DaemonSet可能仅在镜像版本或少量配置参数上存在差异,但需要运行在不同特性的节点上。本文将深入探讨使用Helm管理这类场景的几种实现方案及其优劣比较。
方案分析与比较
方案一:多YAML文件直接部署
实现方式:为每个DaemonSet创建独立的YAML清单文件。
优点:
- 实现简单直接
- 各DaemonSet配置完全独立,清晰明了
缺点:
- 缺乏可扩展性,新增DaemonSet需要修改Chart结构
- 配置重复率高,维护成本随数量增加而上升
- 不符合Helm的"配置即代码"理念
方案二:多次Helm安装
实现方式:拆分Chart为多个子Chart,分别安装。
优点:
- 各DaemonSet配置完全隔离
- 可以针对不同环境进行独立升级
缺点:
- 需要维护多个Chart仓库,增加管理复杂度
- 共享资源(如ConfigMap)难以统一管理
- 安装过程繁琐,需要多次执行helm install
方案三:使用Helm模板循环
实现方式:在values.yaml中定义DaemonSet集合,通过range循环生成资源。
示例values.yaml结构:
daemonSets:
ds1:
image: nginx:1.23
nodeSelector:
disktype: ssd
ds2:
image: nginx:1.24
nodeSelector:
env: production
模板实现:
{{- range $name, $config := .Values.daemonSets }}
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: {{ $name }}
spec:
template:
spec:
containers:
- name: main
image: {{ $config.image }}
nodeSelector: {{ toYaml $config.nodeSelector | nindent 8 }}
{{- end }}
优点:
- 高度可扩展,新增DaemonSet只需添加values配置
- 配置集中管理,便于维护
- 符合Helm的最佳实践
缺点:
- values.yaml结构可能变得复杂
- 需要合理设计模板以避免过度抽象
进阶优化策略
配置合并技术
对于共享大量公共配置的场景,可以采用Helm的merge函数合并基础配置和差异化配置:
{{- $baseConfig := .Values.daemonSetBase }}
{{- range $name, $overrides := .Values.daemonSets }}
{{- $config := merge $overrides $baseConfig }}
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: {{ $name }}
spec:
template:
spec:
containers:
- name: main
image: {{ $config.image }}
resources: {{ toYaml $config.resources | nindent 10 }}
nodeSelector: {{ toYaml $config.nodeSelector | nindent 8 }}
{{- end }}
命名模板的应用
对于复杂的DaemonSet定义,可以使用Helm的命名模板(_helpers.tpl)来封装重复逻辑:
{{- define "mychart.daemonSet" -}}
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: {{ .name }}
spec:
template:
spec:
containers:
- name: main
image: {{ .image }}
{{- with .resources }}
resources: {{ toYaml . | nindent 10 }}
{{- end }}
{{- with .nodeSelector }}
nodeSelector: {{ toYaml . | nindent 8 }}
{{- end }}
{{- end -}}
决策建议
- 少量固定DaemonSet:采用方案一,保持简单性
- 动态数量或频繁变更:优先选择方案三,具有良好的扩展性
- 高度定制化需求:考虑方案二,但需评估维护成本
在实际项目中,方案三结合配置合并和命名模板的技术,能够在保持配置简洁的同时提供最大的灵活性,是大多数场景下的推荐做法。
总结
Helm作为Kubernetes的包管理工具,其模板功能为解决多DaemonSet部署问题提供了优雅的解决方案。通过合理设计values.yaml结构和模板逻辑,我们可以在保持配置可维护性的同时,满足复杂的节点亲和性部署需求。关键在于找到抽象程度和可读性之间的平衡点,既避免过度重复,又不至于使模板过于复杂而难以理解。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882