Ceres-Solver构建过程中Abseil依赖问题的分析与解决
问题背景
Ceres-Solver作为一款优秀的非线性优化库,在计算机视觉、机器人等领域有着广泛应用。近期在构建Ceres-Solver时,许多开发者遇到了与Abseil库相关的依赖问题,特别是当尝试构建依赖Ceres的项目(如COLMAP)时,CMake会报告找不到absl::log、absl::check和absl::fixed_array等目标。
问题现象
在构建过程中,开发者会遇到如下典型的CMake错误信息:
Found package configuration file:
/usr/local/lib/cmake/Ceres/CeresConfig.cmake
but it set Ceres_FOUND to FALSE so package "Ceres" is considered to be NOT FOUND. Reason given by package:
The following imported targets are referenced, but are missing: absl::log absl::check absl::fixed_array
这个问题主要出现在使用Ceres-Solver的master分支时,因为该分支引入了对Abseil库的依赖,而稳定版本2.2.0则不存在这个问题。
问题根源分析
经过深入分析,这个问题主要由以下几个因素导致:
-
Abseil依赖引入:Ceres-Solver的最新开发版本引入了对Abseil库的依赖,特别是absl::log、absl::check和absl::fixed_array组件。
-
CMake配置问题:生成的CeresConfig.cmake文件没有正确处理Abseil依赖的导出和查找机制。
-
安装支持不完善:当前版本的安装支持对于外部安装的Abseil库处理不够完善,特别是在目标导出和依赖解析方面。
解决方案
临时解决方案
对于急需解决问题的开发者,可以采用以下临时方案:
-
使用稳定版本:回退到2.2.0稳定版本,该版本不依赖Abseil库。
-
手动修改CMake文件:编辑/usr/local/lib/cmake/Ceres/CeresTargets.cmake文件,在相关位置前添加
find_package(absl REQUIRED)语句。 -
禁用测试构建:如果遇到与glog相关的构建错误,可以通过禁用测试来绕过问题。
长期解决方案
开发团队正在积极解决这个问题,主要工作包括:
-
完善Abseil支持:改进CMake配置,确保能够正确处理系统安装的Abseil库。
-
版本标识更新:将开发分支的版本号与稳定版本区分开,避免混淆。
-
依赖导出修复:确保所有依赖目标都能正确导出和被发现。
最佳实践建议
-
开发环境:如果使用最新开发分支,建议通过
git clone --recurse-submodules完整获取代码和子模块。 -
生产环境:建议使用最新的稳定版本而非开发分支,以确保稳定性。
-
依赖管理:保持系统依赖(如glog)的版本与Ceres-Solver兼容,避免版本冲突。
技术细节
深入分析这个问题,我们发现其核心在于CMake的目标导出机制。当Ceres导出其目标时,需要确保所有依赖目标(包括Abseil的各个组件)都能被正确找到和链接。当前的实现中,这部分逻辑还不够完善,特别是在处理外部安装的Abseil库时。
开发团队提出的修复方案着重于:
- 改进Abseil组件的查找机制
- 完善目标导出时的依赖处理
- 确保安装后的配置能够正确解析所有依赖关系
总结
Ceres-Solver作为重要的科学计算库,其构建系统的稳定性对用户至关重要。当前遇到的Abseil依赖问题主要影响开发分支用户,稳定版本用户不受影响。开发团队已经意识到这个问题并正在积极修复。对于遇到此问题的用户,可以根据自身需求选择临时解决方案或等待官方修复。
建议关注项目更新,特别是对CMake构建系统的改进,这些改进将显著提升库的易用性和兼容性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00