Ceres-Solver构建过程中Abseil依赖问题的分析与解决
问题背景
Ceres-Solver作为一款优秀的非线性优化库,在计算机视觉、机器人等领域有着广泛应用。近期在构建Ceres-Solver时,许多开发者遇到了与Abseil库相关的依赖问题,特别是当尝试构建依赖Ceres的项目(如COLMAP)时,CMake会报告找不到absl::log、absl::check和absl::fixed_array等目标。
问题现象
在构建过程中,开发者会遇到如下典型的CMake错误信息:
Found package configuration file:
/usr/local/lib/cmake/Ceres/CeresConfig.cmake
but it set Ceres_FOUND to FALSE so package "Ceres" is considered to be NOT FOUND. Reason given by package:
The following imported targets are referenced, but are missing: absl::log absl::check absl::fixed_array
这个问题主要出现在使用Ceres-Solver的master分支时,因为该分支引入了对Abseil库的依赖,而稳定版本2.2.0则不存在这个问题。
问题根源分析
经过深入分析,这个问题主要由以下几个因素导致:
-
Abseil依赖引入:Ceres-Solver的最新开发版本引入了对Abseil库的依赖,特别是absl::log、absl::check和absl::fixed_array组件。
-
CMake配置问题:生成的CeresConfig.cmake文件没有正确处理Abseil依赖的导出和查找机制。
-
安装支持不完善:当前版本的安装支持对于外部安装的Abseil库处理不够完善,特别是在目标导出和依赖解析方面。
解决方案
临时解决方案
对于急需解决问题的开发者,可以采用以下临时方案:
-
使用稳定版本:回退到2.2.0稳定版本,该版本不依赖Abseil库。
-
手动修改CMake文件:编辑/usr/local/lib/cmake/Ceres/CeresTargets.cmake文件,在相关位置前添加
find_package(absl REQUIRED)语句。 -
禁用测试构建:如果遇到与glog相关的构建错误,可以通过禁用测试来绕过问题。
长期解决方案
开发团队正在积极解决这个问题,主要工作包括:
-
完善Abseil支持:改进CMake配置,确保能够正确处理系统安装的Abseil库。
-
版本标识更新:将开发分支的版本号与稳定版本区分开,避免混淆。
-
依赖导出修复:确保所有依赖目标都能正确导出和被发现。
最佳实践建议
-
开发环境:如果使用最新开发分支,建议通过
git clone --recurse-submodules完整获取代码和子模块。 -
生产环境:建议使用最新的稳定版本而非开发分支,以确保稳定性。
-
依赖管理:保持系统依赖(如glog)的版本与Ceres-Solver兼容,避免版本冲突。
技术细节
深入分析这个问题,我们发现其核心在于CMake的目标导出机制。当Ceres导出其目标时,需要确保所有依赖目标(包括Abseil的各个组件)都能被正确找到和链接。当前的实现中,这部分逻辑还不够完善,特别是在处理外部安装的Abseil库时。
开发团队提出的修复方案着重于:
- 改进Abseil组件的查找机制
- 完善目标导出时的依赖处理
- 确保安装后的配置能够正确解析所有依赖关系
总结
Ceres-Solver作为重要的科学计算库,其构建系统的稳定性对用户至关重要。当前遇到的Abseil依赖问题主要影响开发分支用户,稳定版本用户不受影响。开发团队已经意识到这个问题并正在积极修复。对于遇到此问题的用户,可以根据自身需求选择临时解决方案或等待官方修复。
建议关注项目更新,特别是对CMake构建系统的改进,这些改进将显著提升库的易用性和兼容性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00