探索ImageNet训练新境界:统一策略实现顶级性能
2024-05-30 09:54:36作者:柏廷章Berta
项目介绍
Solving ImageNet 是一个官方PyTorch实现的项目,它提供了一个通用的训练策略——USI(Unified Scheme for ImageNet),能够轻松将任何基础模型训练到ImageNet数据集上的顶尖效果。该项目由阿里巴巴达摩院的研究人员开发,旨在简化并优化计算机视觉模型的训练过程。
项目技术分析
USI方案基于知识蒸馏和现代训练技巧,无需为不同模型进行调整或超参数调优,同时保持了高效的训练时间。通过这个统一的框架,无论是CNNs、Transformers、Mobile-friendly模型还是MLP-only模型,都能在保证训练效率的同时,达到前所未有的准确度。
技术亮点:
- 无差别的适用性:USI接受任何背景区分,并自动将其训练至最佳状态。
- 免调优:USI训练配置适用于所有模型,无需专业专家进行手动微调。
- 高效训练:尽管其复杂,但USI确保了训练流程的高效执行。
- 可复现性:论文中所有结果都可以完全复现,增强了研究的可信度和透明度。
应用场景
此项目对于计算机视觉领域的研究人员和开发者来说是一个宝贵的工具。它不仅简化了大规模模型的训练工作流,还提供了模型之间公平且系统化的比较平台。通过USI,您可以:
- 快速评估新架构:利用USI,可以快速测试新的网络结构,对比其速度与精度性能。
- 优化生产环境应用:在资源有限的环境中,找到速度和准确性之间的最优平衡点。
- 推动科研进展:为探索更高效、更强大的模型架构提供了一种标准化的基准测试手段。
项目特点
- 易用性:提供清晰的代码示例,如ResNet50的训练脚本,使得新手也能快速上手。
- 扩展性:支持各种预训练模型,包括最新的TresNet L V2等。
- 持续更新:项目维护积极,例如最新加入了CodiumAI自动生成的测试,增强了代码的质量和可靠性。
为了体验USI的魅力,只需下载预训练教师模型权重,然后按照提供的脚本运行训练即可。
python3 -u -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train.py \
/mnt/Imagenet/
--model=resnet50
--kd_model_name=tresnet_l_v2
--kd_model_path=./tresnet_l_v2_83_9.pth
结论
Solving ImageNet 的出现,标志着ImageNet训练进入了一个全新的自动化时代。无论您是研究者还是实践者,这个项目都值得一试,因为它将帮助您解锁模型潜力,提升计算机视觉应用的表现。立即加入,一起发掘更多可能吧!
引用
@misc{https://doi.org/10.48550/arxiv.2204.03475,
doi = {10.48550/ARXIV.2204.03475},
url = {https://arxiv.org/abs/2204.03475},
author = {Ridnik, Tal and Lawen, Hussam and Ben-Baruch, Emanuel and Noy, Asaf},
keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)},
title = {Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results},
publisher = {arXiv},
year = {2022},
}
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++026Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
943
556

React Native鸿蒙化仓库
C++
196
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
361
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71