探索ImageNet训练新境界:统一策略实现顶级性能
2024-05-30 09:54:36作者:柏廷章Berta
项目介绍
Solving ImageNet 是一个官方PyTorch实现的项目,它提供了一个通用的训练策略——USI(Unified Scheme for ImageNet),能够轻松将任何基础模型训练到ImageNet数据集上的顶尖效果。该项目由阿里巴巴达摩院的研究人员开发,旨在简化并优化计算机视觉模型的训练过程。
项目技术分析
USI方案基于知识蒸馏和现代训练技巧,无需为不同模型进行调整或超参数调优,同时保持了高效的训练时间。通过这个统一的框架,无论是CNNs、Transformers、Mobile-friendly模型还是MLP-only模型,都能在保证训练效率的同时,达到前所未有的准确度。
技术亮点:
- 无差别的适用性:USI接受任何背景区分,并自动将其训练至最佳状态。
- 免调优:USI训练配置适用于所有模型,无需专业专家进行手动微调。
- 高效训练:尽管其复杂,但USI确保了训练流程的高效执行。
- 可复现性:论文中所有结果都可以完全复现,增强了研究的可信度和透明度。
应用场景
此项目对于计算机视觉领域的研究人员和开发者来说是一个宝贵的工具。它不仅简化了大规模模型的训练工作流,还提供了模型之间公平且系统化的比较平台。通过USI,您可以:
- 快速评估新架构:利用USI,可以快速测试新的网络结构,对比其速度与精度性能。
- 优化生产环境应用:在资源有限的环境中,找到速度和准确性之间的最优平衡点。
- 推动科研进展:为探索更高效、更强大的模型架构提供了一种标准化的基准测试手段。
项目特点
- 易用性:提供清晰的代码示例,如ResNet50的训练脚本,使得新手也能快速上手。
- 扩展性:支持各种预训练模型,包括最新的TresNet L V2等。
- 持续更新:项目维护积极,例如最新加入了CodiumAI自动生成的测试,增强了代码的质量和可靠性。
为了体验USI的魅力,只需下载预训练教师模型权重,然后按照提供的脚本运行训练即可。
python3 -u -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train.py \
/mnt/Imagenet/
--model=resnet50
--kd_model_name=tresnet_l_v2
--kd_model_path=./tresnet_l_v2_83_9.pth
结论
Solving ImageNet 的出现,标志着ImageNet训练进入了一个全新的自动化时代。无论您是研究者还是实践者,这个项目都值得一试,因为它将帮助您解锁模型潜力,提升计算机视觉应用的表现。立即加入,一起发掘更多可能吧!
引用
@misc{https://doi.org/10.48550/arxiv.2204.03475,
doi = {10.48550/ARXIV.2204.03475},
url = {https://arxiv.org/abs/2204.03475},
author = {Ridnik, Tal and Lawen, Hussam and Ben-Baruch, Emanuel and Noy, Asaf},
keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)},
title = {Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results},
publisher = {arXiv},
year = {2022},
}
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355