探索ImageNet训练新境界:统一策略实现顶级性能
2024-05-30 09:54:36作者:柏廷章Berta
项目介绍
Solving ImageNet 是一个官方PyTorch实现的项目,它提供了一个通用的训练策略——USI(Unified Scheme for ImageNet),能够轻松将任何基础模型训练到ImageNet数据集上的顶尖效果。该项目由阿里巴巴达摩院的研究人员开发,旨在简化并优化计算机视觉模型的训练过程。
项目技术分析
USI方案基于知识蒸馏和现代训练技巧,无需为不同模型进行调整或超参数调优,同时保持了高效的训练时间。通过这个统一的框架,无论是CNNs、Transformers、Mobile-friendly模型还是MLP-only模型,都能在保证训练效率的同时,达到前所未有的准确度。
技术亮点:
- 无差别的适用性:USI接受任何背景区分,并自动将其训练至最佳状态。
- 免调优:USI训练配置适用于所有模型,无需专业专家进行手动微调。
- 高效训练:尽管其复杂,但USI确保了训练流程的高效执行。
- 可复现性:论文中所有结果都可以完全复现,增强了研究的可信度和透明度。
应用场景
此项目对于计算机视觉领域的研究人员和开发者来说是一个宝贵的工具。它不仅简化了大规模模型的训练工作流,还提供了模型之间公平且系统化的比较平台。通过USI,您可以:
- 快速评估新架构:利用USI,可以快速测试新的网络结构,对比其速度与精度性能。
- 优化生产环境应用:在资源有限的环境中,找到速度和准确性之间的最优平衡点。
- 推动科研进展:为探索更高效、更强大的模型架构提供了一种标准化的基准测试手段。
项目特点
- 易用性:提供清晰的代码示例,如ResNet50的训练脚本,使得新手也能快速上手。
- 扩展性:支持各种预训练模型,包括最新的TresNet L V2等。
- 持续更新:项目维护积极,例如最新加入了CodiumAI自动生成的测试,增强了代码的质量和可靠性。
为了体验USI的魅力,只需下载预训练教师模型权重,然后按照提供的脚本运行训练即可。
python3 -u -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 train.py \
/mnt/Imagenet/
--model=resnet50
--kd_model_name=tresnet_l_v2
--kd_model_path=./tresnet_l_v2_83_9.pth
结论
Solving ImageNet 的出现,标志着ImageNet训练进入了一个全新的自动化时代。无论您是研究者还是实践者,这个项目都值得一试,因为它将帮助您解锁模型潜力,提升计算机视觉应用的表现。立即加入,一起发掘更多可能吧!
引用
@misc{https://doi.org/10.48550/arxiv.2204.03475,
doi = {10.48550/ARXIV.2204.03475},
url = {https://arxiv.org/abs/2204.03475},
author = {Ridnik, Tal and Lawen, Hussam and Ben-Baruch, Emanuel and Noy, Asaf},
keywords = {Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)},
title = {Solving ImageNet: a Unified Scheme for Training any Backbone to Top Results},
publisher = {arXiv},
year = {2022},
}
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58