探索未来之眼——DetNAS:面向目标检测的自动搜索框架
2024-05-22 21:30:50作者:舒璇辛Bertina
在人工智能领域,深度学习已经在计算机视觉中取得了显著成就,其中目标检测是至关重要的一步。今天,我们向你推荐一个革新性的开源项目:DetNAS,这是一个基于PyTorch重新实现的针对对象检测的网络架构搜索框架。它源自Facebook Research的maskrcnn-benchmark,并引入了自动化设计网络的新颖概念。
项目介绍
DetNAS的核心思想是自动化寻找最佳的目标检测网络结构。通过学习和优化,它能够生成在性能和计算效率之间取得平衡的网络模型。项目提供的预训练模型在COCO数据集上表现出了优异的效果,并且提供了一个清晰易懂的搜索流程,使研究者和开发者可以轻松尝试和扩展这一方法。
项目技术分析
DetNAS采用了一种分布式搜索策略,允许在多GPU环境中并行评估网络候选架构。其工作流程包括:首先对超网进行训练,然后利用消息队列服务器进行分布式搜索,最后评估每个候选网络的性能。这个过程充分利用硬件资源,高效地探索可能的设计空间。
此外,项目还提供了对不同计算预算的适应性。搜索得到的网络模型(如DetNAS-COCO-FPN系列)在保持高性能的同时,也考虑到了实际应用中的计算量限制。
项目及技术应用场景
DetNAS不仅适用于研究人员探索新的目标检测网络结构,而且对于开发者来说,它是一个强大的工具,可以帮助他们快速找到适合特定场景和设备的优化模型。例如,在资源有限的移动设备上,可以通过DetNAS搜索出兼顾准确率和运行速度的模型。
项目特点
- 自动化: DetNAS实现了端到端的网络结构自动搜索,极大地简化了网络设计的过程。
- 高效: 基于分布式架构的搜索策略,能够在较短的时间内完成大量的网络评估。
- 灵活性: 支持不同的计算预算,可以为各种设备和场景定制模型。
- 易于使用: 提供详尽的安装指南和训练脚本,方便用户快速上手。
如果你想在目标检测领域挖掘更多潜力,或者希望将AI技术推向新的边界,那么DetNAS绝对值得你一试。现在就加入我们的行列,一起探索未来!别忘了在你的研究成果中引用DetNAS:
@misc{chen2019detnas,
title={DetNAS: Backbone Search for Object Detection},
author={Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, Jian Sun},
year={2019},
booktitle = {NeurIPS},
}
期待你在DetNAS的世界里开启新的探索之旅!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322