探索未来之眼——DetNAS:面向目标检测的自动搜索框架
2024-05-22 21:30:50作者:舒璇辛Bertina
在人工智能领域,深度学习已经在计算机视觉中取得了显著成就,其中目标检测是至关重要的一步。今天,我们向你推荐一个革新性的开源项目:DetNAS,这是一个基于PyTorch重新实现的针对对象检测的网络架构搜索框架。它源自Facebook Research的maskrcnn-benchmark,并引入了自动化设计网络的新颖概念。
项目介绍
DetNAS的核心思想是自动化寻找最佳的目标检测网络结构。通过学习和优化,它能够生成在性能和计算效率之间取得平衡的网络模型。项目提供的预训练模型在COCO数据集上表现出了优异的效果,并且提供了一个清晰易懂的搜索流程,使研究者和开发者可以轻松尝试和扩展这一方法。
项目技术分析
DetNAS采用了一种分布式搜索策略,允许在多GPU环境中并行评估网络候选架构。其工作流程包括:首先对超网进行训练,然后利用消息队列服务器进行分布式搜索,最后评估每个候选网络的性能。这个过程充分利用硬件资源,高效地探索可能的设计空间。
此外,项目还提供了对不同计算预算的适应性。搜索得到的网络模型(如DetNAS-COCO-FPN系列)在保持高性能的同时,也考虑到了实际应用中的计算量限制。
项目及技术应用场景
DetNAS不仅适用于研究人员探索新的目标检测网络结构,而且对于开发者来说,它是一个强大的工具,可以帮助他们快速找到适合特定场景和设备的优化模型。例如,在资源有限的移动设备上,可以通过DetNAS搜索出兼顾准确率和运行速度的模型。
项目特点
- 自动化: DetNAS实现了端到端的网络结构自动搜索,极大地简化了网络设计的过程。
- 高效: 基于分布式架构的搜索策略,能够在较短的时间内完成大量的网络评估。
- 灵活性: 支持不同的计算预算,可以为各种设备和场景定制模型。
- 易于使用: 提供详尽的安装指南和训练脚本,方便用户快速上手。
如果你想在目标检测领域挖掘更多潜力,或者希望将AI技术推向新的边界,那么DetNAS绝对值得你一试。现在就加入我们的行列,一起探索未来!别忘了在你的研究成果中引用DetNAS:
@misc{chen2019detnas,
title={DetNAS: Backbone Search for Object Detection},
author={Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng, Xinyu Xiao, Jian Sun},
year={2019},
booktitle = {NeurIPS},
}
期待你在DetNAS的世界里开启新的探索之旅!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134