LLMs-from-scratch项目中PyTorch张量形状处理问题解析
2025-05-01 11:55:20作者:冯梦姬Eddie
在构建LLM模型时,PyTorch张量的形状处理是一个常见但容易出错的技术点。本文将以LLMs-from-scratch项目中的一个具体案例,深入分析PyTorch中张量形状处理的最佳实践。
问题背景
在LLMs-from-scratch项目的第五章中,当尝试在Gutenberg数据集上进行预训练时,遇到了一个典型的张量形状不匹配问题。具体表现为在计算交叉熵损失时,输入张量和目标张量的形状不一致,导致RuntimeError。
技术分析
问题的核心在于calc_loss_batch函数中使用了不恰当的flatten()方法。原始代码试图将logits和目标张量都展平为一维张量:
loss = torch.nn.functional.cross_entropy(logits.flatten(0, -1), target_batch.flatten())
这种方法存在两个问题:
flatten(0, -1)的用法不正确,导致展平后的形状与预期不符- 对于交叉熵损失计算,logits需要保持二维结构(batch_size*sequence_length, vocab_size)
解决方案
正确的做法是使用view()方法进行形状重塑:
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)),
target_batch.view(-1)
)
这种处理方式:
- 将logits重塑为(batch_size*sequence_length, vocab_size)的二维张量
- 将目标张量重塑为一维张量(batch_size*sequence_length)
- 保持了交叉熵损失计算所需的形状对应关系
深入理解
在PyTorch中处理张量形状时,有几个关键点需要注意:
-
view()与reshape()的区别:两者功能相似,但view()要求张量在内存中是连续的,而reshape()会自动处理非连续情况 -
交叉熵损失的输入要求:
- 输入应为二维张量(batch_size*sequence_length, vocab_size)
- 目标应为一维张量(batch_size*sequence_length)
-
形状处理的最佳实践:
- 明确指定最后一个维度的大小(vocab_size)
- 使用-1让PyTorch自动计算合适的维度大小
- 在关键操作前后打印张量形状进行验证
实际应用效果
采用修正后的代码后,模型能够正常训练,损失值呈现预期的下降趋势。训练过程中可以观察到:
- 初始训练损失约为9.95
- 经过700步训练后,损失降至5.62左右
- 验证损失同步下降,表明模型正在有效学习
总结
在LLM模型开发中,正确处理张量形状是确保模型正常训练的基础。通过这个案例,我们了解到:
- 选择正确的形状处理方法至关重要
- 理解PyTorch中各种形状操作函数的差异
- 掌握交叉熵损失对输入形状的特殊要求
- 在复杂模型中,形状验证是调试的重要环节
这个案例不仅解决了具体的技术问题,也为PyTorch张量处理提供了有价值的实践经验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
303
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247