标题:【深度解析】RESCAN:循环挤压与激活上下文聚合网络——一键清除图像雨迹
标题:【深度解析】RESCAN:循环挤压与激活上下文聚合网络——一键清除图像雨迹
项目介绍
在计算机视觉领域中,雨水对图像的破坏性影响是不容忽视的问题,它可能导致许多算法的性能下降甚至失效。为此,我们向您推荐一款强大的开源项目:RESCAN(Recurrent Squeeze-and-Excitation Context Aggregation Net)。该项目由北京大学机器感知实验室的研究人员开发,旨在通过深度学习方法实现单张图像的高效去雨处理。
项目技术分析
RESCAN采用了一种基于深度卷积和递归神经网络的独特架构来去除图像中的雨滴。其创新之处在于,通过扩张卷积神经网络捕获大范围的上下文信息,以更好地适应雨滴移除任务。此外,针对强降雨中雨滴方向和形状的多样性,项目借鉴了挤压与激活块(Squeeze-and-Excitation Block),为不同强度和透明度的雨滴层分配不同的权重(alpha值)。更重要的是,由于雨滴之间的重叠,一次性移除所有雨滴颇具挑战,因此RESCAN利用递归神经网络分阶段进行处理,确保前后阶段的信息连贯性,从而提升去雨效果。
应用场景
这款技术不仅适用于学术研究,也广泛应用于实际生活和工业界。例如,在自动驾驶、监控摄像头、户外摄影等领域,RESCAN可以实时或后期处理图像,改善因雨水导致的图像质量下降问题,提高系统的识别准确性和稳定性。
项目特点
- 高效算法:基于深度学习,能快速、准确地去除图像中的雨滴。
- 灵活设计:采用递归结构,逐步处理复杂雨滴覆盖,确保信息保留。
- 可扩展性:提供清晰的代码结构和文档,便于开发者进行二次开发和改进。
- 广泛适用性:支持合成数据集和真实世界数据集,适应多种去雨场景。
使用指南
该项目基于Python 3.6和PyTorch 4.1.0构建,还依赖OpenCV和tensorboardX。训练、测试和展示模型的操作简单明了,只需运行相应的脚本即可。
如果你在图像去雨或者相关领域工作,那么RESCAN无疑是一个值得尝试的优秀工具。在使用过程中有任何问题,可以参考项目文档或联系作者获取帮助。最后,如果你的论文引用了该技术,请务必正确引用RESCAN的原始论文。
@inproceedings{li2018recurrent,
title={Recurrent Squeeze-and-Excitation Context Aggregation Net for Single Image Deraining},
author={Li, Xia and Wu, Jianlong and Lin, Zhouchen and Liu, Hong and Zha, Hongbin},
booktitle={European Conference on Computer Vision},
pages={262--277},
year={2018},
organization={Springer}
}
现在,就动手试试RESCAN,让雨水不再成为你视觉处理的障碍!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00