InvCompress:革命性的图像压缩技术
2024-09-21 09:03:31作者:何举烈Damon
在当今数字化时代,图像压缩技术的重要性不言而喻。无论是社交媒体、视频流媒体还是云存储,高效的图像压缩技术都能显著提升用户体验和资源利用率。今天,我们要介绍的是一款名为 InvCompress 的开源项目,它基于 PyTorch 实现,旨在通过增强的可逆编码技术,提供更高质量的图像压缩效果。
项目介绍
InvCompress 是由 Yueqi Xie、Ka Leong Cheng 和 Qifeng Chen 在 ACMMM 2021 会议上提出的创新性图像压缩框架。该项目通过引入可逆神经网络(INNs),解决了传统自动编码器在图像压缩过程中信息损失的问题。InvCompress 不仅在压缩效率上有所突破,还在图像质量的保持上表现出色,是图像压缩领域的一次重要革新。
项目技术分析
InvCompress 的核心技术在于其可逆编码网络的设计。与传统的自动编码器不同,InvCompress 使用可逆神经网络来构建图像空间与潜在特征空间之间的转换,从而大幅减少了信息损失。为了应对 INN 训练不稳定的问题,项目团队还提出了一种注意力通道挤压层,用于灵活调整特征维度,以实现更低的比特率。此外,项目还引入了一个特征增强模块,通过相同分辨率的变换和残差连接,提升了网络的非线性表示能力。
项目及技术应用场景
InvCompress 的技术优势使其在多个应用场景中具有广泛的应用潜力:
- 社交媒体:在社交媒体平台上,用户上传的图片数量庞大,InvCompress 可以显著减少图片的存储和传输成本,同时保持高质量的视觉效果。
- 视频流媒体:在视频流媒体服务中,InvCompress 可以提高视频流的压缩效率,减少带宽消耗,提升用户的观看体验。
- 云存储:在云存储服务中,InvCompress 可以大幅减少存储空间的占用,降低运营成本。
项目特点
- 高效的可逆编码:通过可逆神经网络,InvCompress 在压缩过程中几乎无信息损失,保证了图像的高质量。
- 灵活的特征维度调整:注意力通道挤压层的引入,使得特征维度的调整更加灵活,适应不同的压缩需求。
- 强大的非线性表示能力:特征增强模块的加入,进一步提升了网络的非线性表示能力,使得压缩后的图像更加逼真。
结语
InvCompress 不仅是一个技术上的突破,更是一个能够实际应用并带来显著效益的开源项目。无论你是图像处理领域的研究者,还是希望提升图像压缩效率的开发者,InvCompress 都值得你一试。赶快访问 InvCompress GitHub 页面,开始你的图像压缩之旅吧!
参考文献
@inproceedings{xie2021enhanced,
title = {Enhanced Invertible Encoding for Learned Image Compression},
author = {Yueqi Xie and Ka Leong Cheng and Qifeng Chen},
booktitle = {Proceedings of the ACM International Conference on Multimedia},
pages = {162--170},
year = {2021}
}
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881