LangServe项目中RemoteRunnable返回结果缺失上下文的技术解析与解决方案
2025-07-04 15:44:01作者:邬祺芯Juliet
问题背景
在LangServe项目的实际应用中,开发者经常需要构建基于检索增强生成(RAG)的问答系统。一个典型场景是将问答链部署为服务并通过RemoteRunnable远程调用。然而,许多开发者遇到了一个共同问题:当直接运行Python脚本时,问答链能正确返回包含源文档的完整上下文,但通过RemoteRunnable调用时却丢失了关键的上下文信息。
技术原理分析
这个问题的根源在于LangChain的类型推断机制。在本地直接运行时,LangChain能够自动推断出完整的输出类型结构。但当通过RemoteRunnable进行远程调用时,类型系统无法自动识别和保留完整的返回数据结构,特别是文档上下文部分。
具体来说,一个典型的RAG链应该返回包含以下四个部分的对象:
- 用户输入(input)
- 聊天历史(chat_history)
- 检索到的上下文文档(context)
- 生成的答案(answer)
但在RemoteRunnable场景下,系统默认只保留了输入、聊天历史和答案三个部分,关键的上下文文档被意外丢弃。
解决方案实现
解决这个问题的关键在于显式定义输出类型。以下是具体实现步骤:
- 首先定义输出数据结构模型:
from pydantic import BaseModel
from typing import List, Union
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.documents import Document
class Output(BaseModel):
chat_history: List[Union[HumanMessage, AIMessage]]
input: str
context: List[Document]
answer: str
- 然后在创建路由时显式指定输出类型:
add_routes(
app,
conversational_rag_chain.with_types(output_type=Output),
path="/qachat"
)
技术细节说明
-
Pydantic模型的作用:通过定义严格的输出模型,我们确保了无论通过本地调用还是远程调用,返回的数据结构都保持一致。
-
类型安全:显式类型定义不仅解决了数据丢失问题,还提供了更好的类型提示和验证,有助于早期发现潜在问题。
-
向后兼容:这种解决方案不会影响现有代码的正常运行,只是增强了返回数据的完整性。
最佳实践建议
-
对于任何需要远程调用的LangChain应用,建议都显式定义输入输出类型。
-
在开发过程中,可以使用如下方式验证输出类型:
print(conversational_rag_chain.output_schema.schema())
- 考虑为不同的链定义不同的输出模型,以精确控制每个端点的返回数据结构。
总结
通过显式定义输出类型,我们成功解决了LangServe中RemoteRunnable返回结果缺失上下文的问题。这种方法不仅简单有效,还能提高代码的可维护性和可靠性。对于构建生产级的LangChain应用,合理使用类型系统是确保系统稳定性的重要手段。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133