LangServe项目中RemoteRunnable返回结果缺失上下文的技术解析与解决方案
2025-07-04 18:45:45作者:邬祺芯Juliet
问题背景
在LangServe项目的实际应用中,开发者经常需要构建基于检索增强生成(RAG)的问答系统。一个典型场景是将问答链部署为服务并通过RemoteRunnable远程调用。然而,许多开发者遇到了一个共同问题:当直接运行Python脚本时,问答链能正确返回包含源文档的完整上下文,但通过RemoteRunnable调用时却丢失了关键的上下文信息。
技术原理分析
这个问题的根源在于LangChain的类型推断机制。在本地直接运行时,LangChain能够自动推断出完整的输出类型结构。但当通过RemoteRunnable进行远程调用时,类型系统无法自动识别和保留完整的返回数据结构,特别是文档上下文部分。
具体来说,一个典型的RAG链应该返回包含以下四个部分的对象:
- 用户输入(input)
- 聊天历史(chat_history)
- 检索到的上下文文档(context)
- 生成的答案(answer)
但在RemoteRunnable场景下,系统默认只保留了输入、聊天历史和答案三个部分,关键的上下文文档被意外丢弃。
解决方案实现
解决这个问题的关键在于显式定义输出类型。以下是具体实现步骤:
- 首先定义输出数据结构模型:
from pydantic import BaseModel
from typing import List, Union
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.documents import Document
class Output(BaseModel):
chat_history: List[Union[HumanMessage, AIMessage]]
input: str
context: List[Document]
answer: str
- 然后在创建路由时显式指定输出类型:
add_routes(
app,
conversational_rag_chain.with_types(output_type=Output),
path="/qachat"
)
技术细节说明
-
Pydantic模型的作用:通过定义严格的输出模型,我们确保了无论通过本地调用还是远程调用,返回的数据结构都保持一致。
-
类型安全:显式类型定义不仅解决了数据丢失问题,还提供了更好的类型提示和验证,有助于早期发现潜在问题。
-
向后兼容:这种解决方案不会影响现有代码的正常运行,只是增强了返回数据的完整性。
最佳实践建议
-
对于任何需要远程调用的LangChain应用,建议都显式定义输入输出类型。
-
在开发过程中,可以使用如下方式验证输出类型:
print(conversational_rag_chain.output_schema.schema())
- 考虑为不同的链定义不同的输出模型,以精确控制每个端点的返回数据结构。
总结
通过显式定义输出类型,我们成功解决了LangServe中RemoteRunnable返回结果缺失上下文的问题。这种方法不仅简单有效,还能提高代码的可维护性和可靠性。对于构建生产级的LangChain应用,合理使用类型系统是确保系统稳定性的重要手段。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19