DenseDiffusion 项目使用教程
2024-09-14 01:48:15作者:吴年前Myrtle
1. 项目介绍
DenseDiffusion 是一个训练无需额外数据的方法,旨在将预训练的文本到图像模型适应于处理密集的文本描述,同时提供对场景布局的控制。该项目由 NAVER AI Lab 和 Carnegie Mellon University 共同开发,并在 ICCV 2023 上发表。
主要特点:
- 训练无需额外数据:无需额外的数据集或微调,即可提升图像生成性能。
- 密集文本处理:能够处理每个文本提示提供详细描述的特定图像区域的密集文本。
- 布局控制:通过注意力调制方法,指导对象根据布局指导出现在特定区域。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch 1.8+
- Hugging Face Transformers
2.2 安装
git clone https://github.com/naver-ai/DenseDiffusion.git
cd DenseDiffusion
pip install -r requirements.txt
2.3 启动 Web 界面
# 设置你的 Hugging Face Hub 访问令牌
export HF_TOKEN="your_huggingface_token"
# 运行 Gradio 应用
python gradio_app.py
3. 应用案例和最佳实践
3.1 创建图像布局
- 标签每个段落:为每个图像区域提供详细的文本描述。
- 调整完整文本:默认情况下,完整文本会自动从每个段落的文本中拼接。你可以进一步优化完整文本以提高结果质量。
- 生成图像:检查生成的图像,并根据需要调整超参数。
3.2 超参数调整
- wc:交叉注意力层的注意力调制度。
- ws:自注意力层的注意力调制度。
4. 典型生态项目
4.1 ComfyUI_densediffusion
ComfyUI_densediffusion 是一个为 ComfyUI 定制的节点,实现了类似于 DenseDiffusion 的方法,用于区域提示。该项目由 huchenlei 开发,地址为:https://github.com/huchenlei/ComfyUI_densediffusion
4.2 Omost 项目
Omost 项目中使用了区域提示方法,可以参考其实现:https://github.com/lllyasviel/Omost#regional-prompter
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694