首页
/ DenseDiffusion 项目使用教程

DenseDiffusion 项目使用教程

2024-09-14 17:42:28作者:吴年前Myrtle

1. 项目介绍

DenseDiffusion 是一个训练无需额外数据的方法,旨在将预训练的文本到图像模型适应于处理密集的文本描述,同时提供对场景布局的控制。该项目由 NAVER AI Lab 和 Carnegie Mellon University 共同开发,并在 ICCV 2023 上发表。

主要特点:

  • 训练无需额外数据:无需额外的数据集或微调,即可提升图像生成性能。
  • 密集文本处理:能够处理每个文本提示提供详细描述的特定图像区域的密集文本。
  • 布局控制:通过注意力调制方法,指导对象根据布局指导出现在特定区域。

2. 项目快速启动

2.1 环境准备

确保你已经安装了以下依赖:

  • Python 3.7+
  • PyTorch 1.8+
  • Hugging Face Transformers

2.2 安装

git clone https://github.com/naver-ai/DenseDiffusion.git
cd DenseDiffusion
pip install -r requirements.txt

2.3 启动 Web 界面

# 设置你的 Hugging Face Hub 访问令牌
export HF_TOKEN="your_huggingface_token"

# 运行 Gradio 应用
python gradio_app.py

3. 应用案例和最佳实践

3.1 创建图像布局

  1. 标签每个段落:为每个图像区域提供详细的文本描述。
  2. 调整完整文本:默认情况下,完整文本会自动从每个段落的文本中拼接。你可以进一步优化完整文本以提高结果质量。
  3. 生成图像:检查生成的图像,并根据需要调整超参数。

3.2 超参数调整

  • wc:交叉注意力层的注意力调制度。
  • ws:自注意力层的注意力调制度。

4. 典型生态项目

4.1 ComfyUI_densediffusion

ComfyUI_densediffusion 是一个为 ComfyUI 定制的节点,实现了类似于 DenseDiffusion 的方法,用于区域提示。该项目由 huchenlei 开发,地址为:https://github.com/huchenlei/ComfyUI_densediffusion

4.2 Omost 项目

Omost 项目中使用了区域提示方法,可以参考其实现:https://github.com/lllyasviel/Omost#regional-prompter

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1