解决text-extract-api项目中LLM生成JSON格式输出的挑战
2025-06-30 17:21:11作者:胡易黎Nicole
在text-extract-api项目中,使用大型语言模型(LLM)从文档(如发票)中提取数据并生成结构化JSON输出时,开发者经常遇到一个棘手问题:模型有时会不遵循预设字段,自行添加新字段。这种行为对于需要精确数据格式的应用场景(如数据库集成)带来了显著挑战。
问题本质分析
LLM在生成JSON输出时出现偏差,主要源于几个技术因素:
- 模型自由度过高:LLM本质上是一种概率生成模型,即使在明确指令下,仍可能产生超出预期的输出
- 提示工程不足:简单的JSON格式要求可能不足以约束模型行为
- 上下文理解偏差:模型可能错误"理解"某些字段的含义或必要性
解决方案探索
经过项目实践,我们总结出几种有效的解决方案:
1. 优化提示工程
在提示中加入JSON Schema可以显著改善输出质量。例如:
prompt = """
请严格按以下JSON Schema格式输出数据:
{
"invoice": {
"number": "string",
"date": "string",
"total": "number"
}
}
不要添加任何额外字段。
"""
2. 输出格式参数化
现代LLM API通常支持输出格式参数。例如Ollama API提供了format参数:
response = client.generate(
model="llama3",
prompt=prompt,
format="json" # 强制JSON输出
)
3. 后处理验证
使用Pydantic等库建立严格的数据验证:
from pydantic import BaseModel
class Invoice(BaseModel):
number: str
date: str
total: float
# 验证LLM输出
try:
validated = Invoice.model_validate_json(llm_output)
except ValidationError as e:
print(f"格式错误: {e}")
实际应用效果
在text-extract-api项目中,结合上述方法后,医疗报告提取的JSON输出质量显著提升。例如一个MRI报告的提取结果:
{
"practice": {
"name": "Ikengil Radiology Associates",
"phone": "201-725-0913"
},
"patient": {
"name": "Jane, Mary",
"dob": "1966-00-00"
}
}
最佳实践建议
- 分层提示设计:先说明任务目标,再提供格式要求
- 渐进式约束:从宽松到严格逐步增加格式限制
- 错误处理机制:对不符合格式的输出应有自动重试策略
- 模型微调:对固定业务场景可考虑微调模型以更好适应特定格式
通过系统性地应用这些方法,text-extract-api项目能够更可靠地从各类文档中提取结构化数据,为下游应用提供稳定、一致的数据接口。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134