首页
/ 30分钟搞定数据清洗:Pandas实战泰坦尼克号生存分析

30分钟搞定数据清洗:Pandas实战泰坦尼克号生存分析

2026-02-05 04:18:43作者:明树来

你是否还在为Excel中重复的筛选、排序和VLOOKUP感到抓狂?面对杂乱的CSV数据,是否不知道如何快速提取有效信息?本文将通过泰坦尼克号数据集,带你掌握Pandas(Python数据分析库)从数据加载到结果可视化的全流程,让你从此告别繁琐的手动操作,轻松处理千行数据。

读完本文你将学会:

  • 5分钟上手Pandas核心数据结构
  • 3步完成缺失值自动化处理
  • 一行代码实现数据分组统计
  • 零基础绘制专业数据可视化图表

一、环境准备与数据加载

1.1 安装Pandas

使用以下命令快速安装Pandas:

pip install pandas

官方安装指南可参考setup.py文件,国内用户建议使用清华镜像源加速安装。

1.2 数据集介绍

本文使用的泰坦尼克号数据集位于项目doc/data/titanic.csv,包含891名乘客的基本信息和生存状态,部分数据如下:

PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C

1.3 加载数据

使用Pandas的read_csv函数加载数据,代码如下:

import pandas as pd
df = pd.read_csv('doc/data/titanic.csv')

核心数据结构DataFrame会将CSV数据转换为类似Excel表格的格式,方便进行后续操作。

二、数据初探:快速了解数据集

2.1 基本信息查看

通过以下代码获取数据集概览:

# 查看前5行数据
print(df.head())

# 获取数据集基本信息
print(df.info())

# 统计数值型列的描述性统计量
print(df.describe())

执行结果会显示数据集包含12列,其中AgeCabinEmbarked存在缺失值,这正是我们需要清洗的重点。

2.2 数据结构解析

Pandas主要有两种数据结构:

  • Series:一维数组,类似Excel中的一列数据
  • DataFrame:二维表格,由多个Series组成

通过df['列名']可快速获取指定列数据,例如查看乘客年龄分布:

ages = df['Age']
print(ages.value_counts())

三、数据清洗:3步解决90%的数据问题

3.1 缺失值处理

缺失值是数据清洗中最常见的问题,Pandas提供了简洁的处理方法:

# 检查每列缺失值数量
print(df.isnull().sum())

# 填充年龄缺失值为平均值
df['Age'].fillna(df['Age'].mean(), inplace=True)

# 删除Embarked列中的缺失值
df.dropna(subset=['Embarked'], inplace=True)

对于Cabin列(缺失率77%),我们可以创建"未知"类别进行填充:

df['Cabin'] = df['Cabin'].fillna('Unknown')

3.2 数据类型转换

SurvivedPclass转换为分类数据类型,减少内存占用并方便后续分析:

df['Survived'] = df['Survived'].astype('category')
df['Pclass'] = df['Pclass'].astype('category')

3.3 新增特征工程

从姓名中提取头衔信息,创建新特征Title

df['Title'] = df['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)
# 将稀有头衔归类为"Other"
rare_titles = ['Lady', 'Countess','Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona']
df['Title'] = df['Title'].replace(rare_titles, 'Other')

四、数据分析:揭秘生存规律

4.1 性别与生存关系

使用groupby功能一键统计不同性别的生存率:

gender_survive = df.groupby('Sex')['Survived'].mean()
print(gender_survive)

结果显示女性生存率(74.2%)远高于男性(18.9%),这与"女士优先"的救援原则一致。

4.2 阶级与生存关系

分析不同舱位乘客的生存情况:

class_survive = df.groupby('Pclass')['Survived'].mean()
print(class_survive)

一等舱乘客生存率(62.9%)显著高于三等舱(26.2%),反映了当时的社会阶层差异。

4.3 多因素交叉分析

结合性别和舱位进行更深入的分析:

cross_analysis = df.groupby(['Sex', 'Pclass'])['Survived'].mean()
print(cross_analysis.unstack())

数据显示,一等舱女性的生存率高达96.8%,而三等舱男性的生存率仅为11.7%。

五、数据可视化:让结果更直观

5.1 生存率对比柱状图

import matplotlib.pyplot as plt
import seaborn as sns

# 设置中文显示
plt.rcParams["font.family"] = ["SimHei", "WenQuanYi Micro Hei", "Heiti TC"]

# 绘制性别与生存率关系图
sns.barplot(x='Sex', y='Survived', data=df)
plt.title('不同性别的生存率对比')
plt.ylabel('生存率')
plt.xlabel('性别')
plt.show()

5.2 年龄分布箱线图

# 绘制不同舱位的年龄分布
sns.boxplot(x='Pclass', y='Age', data=df)
plt.title('不同舱位乘客的年龄分布')
plt.ylabel('年龄')
plt.xlabel('舱位等级')
plt.show()

六、实战总结与进阶学习

通过本次实战,我们使用Pandas完成了从数据加载、清洗、分析到可视化的全流程。核心技巧包括:

  • 使用read_csv快速加载数据
  • 利用fillnadropna处理缺失值
  • 通过groupby实现高效数据分组
  • 结合Matplotlib/Seaborn绘制可视化图表

推荐学习资源

下期预告

下一篇文章将介绍Pandas的时间序列处理功能,带你分析股票数据中的季节性规律。点赞+收藏+关注,不错过实用数据分析技巧!

返回顶部

登录后查看全文
热门项目推荐
相关项目推荐