Eesen:简化语音识别的革命性开源项目
2024-09-19 18:50:20作者:蔡怀权
项目介绍
Eesen 是一个旨在简化现有复杂且专业性强的语音识别(ASR)流程的开源项目。它将语音识别问题简化为一个直接的序列学习问题。在 Eesen 中,声学建模涉及训练一个单一的循环神经网络(RNN)来模拟从语音到文本的映射。Eesen 摒弃了传统 ASR 流程中所需的多个复杂组件,包括:
- 隐马尔可夫模型(HMMs)
- 高斯混合模型(GMMs)
- 决策树和音素问题
- 字典(如果使用字符作为建模单元)
Eesen 由 Yajie Miao 创建,灵感来源于 Kaldi 工具包。感谢 Yajie 的贡献!
项目技术分析
Eesen 包含四个关键组件,以实现端到端的语音识别:
- 声学模型:使用双向 RNN 和 LSTM 单元。
- 训练:采用连接主义时序分类(CTC)作为训练目标。
- WFST 解码:基于加权有限状态转换器(WFSTs)的解码方法,能够有效且高效地将词典和语言模型融入 CTC 解码中。
- RNN-LM 解码:基于字符 RNN 语言模型的解码方法,无需固定词典。
项目及技术应用场景
Eesen 适用于各种需要语音识别的场景,特别是在以下情况下:
- 实时语音识别:适用于需要快速响应的实时语音识别应用,如语音助手、实时字幕生成等。
- 大规模语音数据处理:适用于需要处理大量语音数据的应用,如语音搜索、语音翻译等。
- 定制化语音识别系统:适用于需要根据特定领域或语言定制语音识别系统的场景,如医疗、法律、教育等。
项目特点
Eesen 具有以下显著特点:
- 简化流程:摒弃了传统 ASR 流程中的多个复杂组件,简化了语音识别的实现过程。
- 高效解码:WFST 解码方法能够有效且高效地将词典和语言模型融入 CTC 解码中。
- 灵活性:RNN-LM 解码方法无需固定词典,提供了更大的灵活性。
- GPU 加速:LSTM 模型训练和 CTC 学习的 GPU 实现,加速了训练过程。
- 并行处理:支持多条语音数据的并行处理,进一步提升了训练速度。
- 示例丰富:提供了完整的示例设置,展示了端到端系统构建的过程,遵循 Kaldi 的配方和惯例。
实验结果
详细的实验结果请参考每个示例设置下的 RESULTS 文件。
参考文献
更多信息请参考以下论文:
Yajie Miao, Mohammad Gowayyed, and Florian Metze, "EESEN: End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding," in Proc. Automatic Speech Recognition and Understanding Workshop (ASRU), Scottsdale, AZ; U.S.A., December 2015. IEEE.
Eesen 是一个革命性的开源项目,它不仅简化了语音识别的实现过程,还提供了高效、灵活的解决方案。无论你是语音识别领域的专家,还是初学者,Eesen 都值得一试。立即访问 Eesen 项目主页,开始你的语音识别之旅吧!
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 开源电子设计自动化利器:KiCad EDA全方位使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
301
2.65 K
Ascend Extension for PyTorch
Python
130
152
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.42 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205