Apache Storm中KafkaTridentSpoutEmitter的优化改进
背景介绍
在Apache Storm的流处理框架中,KafkaTridentSpoutEmitter负责从Kafka消息队列中获取数据并传递给Storm拓扑进行处理。在原有实现中,当Spout被分配多个Topic分区时,Emitter会逐个分区进行轮询获取数据,这种方式存在一些效率问题。
原有实现的问题
原有的KafkaTridentTransactionalSpoutEmitter和KafkaTridentOpaqueEmitter实现采用逐个分区轮询的策略,这种设计存在两个主要缺点:
-
无效轮询开销:当某些分区没有新数据时,Emitter仍然会浪费时间在这些空分区上进行轮询操作,降低了整体吞吐量。
-
批次控制不灵活:由于是逐个分区获取数据,难以精确控制每个Trident批次的大小,影响处理效率。
优化方案
改进后的实现充分利用了Kafka Consumer原生的轮询机制,让Kafka Broker自行决定从哪个分区获取数据。这种优化带来了显著优势:
-
智能分区选择:Kafka Broker能够自动跳过没有新数据的分区,直接返回有可用数据的分区,减少了不必要的轮询开销。
-
更好的批次控制:通过调整Kafka Consumer的相关参数,可以更精确地控制每个Trident批次的大小,提高处理效率。
技术细节
值得注意的是,这一优化主要影响批次首次发射时的行为。在后续处理中,系统仍然会保持原有的处理逻辑以确保数据处理的正确性和一致性。
实际影响
这一改进对于处理高吞吐量Kafka数据流的Storm拓扑尤为有益,特别是在以下场景:
- 当Spout被分配大量Topic分区时
- 各分区数据分布不均匀的情况下
- 需要精确控制处理批次的场景
总结
通过对KafkaTridentSpoutEmitter的优化,Apache Storm在处理Kafka数据源时能够获得更高的效率和更好的控制能力。这一改进体现了Storm社区持续优化框架性能的努力,为大数据流处理场景提供了更强大的支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00