pytest升级后跳过测试时__new__调用行为的变化分析
背景介绍
在pytest测试框架中,开发者经常使用跳过标记(skip marker)来控制特定测试用例的执行。近期有用户从pytest 6.2.5升级到8.3.3版本后发现,测试类的__new__方法调用行为发生了变化,这影响了他们原有的测试安全机制实现方式。
问题现象
在pytest 6.2.5版本中,当通过pytest_collection_modifyitems钩子为测试项添加跳过标记时:
- 如果测试被标记为跳过,测试类的
__new__方法不会被调用 - 只有未被跳过的测试才会触发
__new__方法的执行
而在升级到pytest 8.3.3后:
- 无论测试是否被跳过,测试类的
__new__方法都会被调用 - 这导致原本依赖
__new__方法进行环境安全检查的代码出现了问题
技术分析
原有实现机制
用户原有的实现方式是在unittest.TestCase的子类中重写__new__方法,用于执行环境安全检查。当检测到不安全的测试环境时,会抛出异常阻止测试执行。这种实现方式依赖于pytest 6.2.5版本中跳过测试时不实例化测试类的行为特性。
pytest内部机制变化
pytest核心开发者指出,测试类实例化是unittest.TestCase的标准契约行为。在早期版本中跳过测试时不调用__new__实际上是一个实现细节而非设计特性。随着pytest内部实现的改进,8.3.3版本更加严格地遵循了unittest的契约,确保测试类总是会被实例化。
安全机制的正确实现方式
对于需要在测试执行前进行环境检查的场景,推荐使用以下替代方案:
- setUpClass类方法:在类级别进行一次性检查
@classmethod
def setUpClass(cls):
if not is_safe_environment():
raise unittest.SkipTest("Unsafe environment")
super().setUpClass()
- setUp实例方法:在每个测试方法执行前进行检查
def setUp(self):
if not is_safe_environment():
raise unittest.SkipTest("Unsafe environment")
super().setUp()
- 自定义pytest标记:结合pytest的标记系统和钩子函数实现更灵活的检查
@pytest.mark.safe_environment
def test_something(self):
pass
最佳实践建议
-
避免依赖框架内部实现细节:
__new__方法的调用行为属于框架实现细节,不应作为安全检查的依赖点 -
明确区分收集阶段和执行阶段:pytest的测试生命周期中,收集阶段和执行阶段有不同的职责,安全检查应放在合适的阶段
-
考虑多种运行场景:如果测试可能通过不同方式运行(如直接使用unittest运行器),应确保安全机制在所有场景下都有效
-
使用标准扩展点:优先使用unittest或pytest提供的标准扩展点(如setUp、标记系统)来实现自定义逻辑
结论
pytest从6.2.5到8.3.3版本的这一行为变化,实际上是框架朝着更加规范和可靠的方向发展。开发者应该调整测试安全机制的实现方式,使用更加标准和可靠的方法来进行环境检查。这不仅解决了当前的问题,也使代码更加健壮和可维护。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00