**做R语言下的元分析:实战指南**
项目介绍
本项目是《用R进行元分析:实战指南》一书的所有R代码及源文件的公开存储库。它旨在成为非专家也能轻松上手的元分析入门材料,通过本书,读者可以学会如何在R环境中执行元分析的关键步骤,包括效应量合并、森林图展示、异质性诊断、亚组分析、元回归、发表偏倚控制方法以及风险偏倚评估等。高级但极其实用的主题,如网络元分析、多/三层元分析、贝叶斯元分析方法和结构方程模型元分析也涵盖其中。所有编程和统计背景知识都以易于理解的方式呈现,并且该书已由Chapman & Hall/CRC出版社(Taylor & Francis集团)出版实体版。
项目基于[rmarkdown]和[bookdown]构建,公式利用MathJax渲染,全部资料和源码均可在此仓库中找到。尽管鼓励分享和复用内容,但仓库主要设为“只读”,不常规接受PR,建议通过邮件联系作者进行交流。
项目快速启动
要快速启动并利用此项目,首先确保你的计算机安装了R语言环境和RStudio。之后,通过以下步骤开始:
# 在R环境下安装必要的包
install.packages(c("meta", "dmetar", "bookdown"))
# 克隆项目到本地
git clone https://github.com/MathiasHarrer/Doing-Meta-Analysis-in-R.git
# 导入项目到RStudio并查看或运行示例代码
library(bookdown)
setwd("Doing-Meta-Analysis-in-R")
render_book("index.Rmd", output_format = "bookdown::pdf_book")
这将编译书籍的PDF版本,让你能够浏览所有教程和代码示例。
应用案例和最佳实践
示例:效应量合并基础
作为一个应用案例,考虑合并多个研究中的标准化均值差。遵循书中指导,你可以这样做:
library(meta)
# 假设data是已经导入的研究数据集,含effectSize和variance列
my数据分析 <- meta::metagen(
effectSize = data$effectSize,
var.eff.size = data$variance,
studlab = paste("Study", 1:nrow(data)),
method = "random"
)
summary(my数据分析)
这个命令展示了采用随机效应模型合并效应量的基本过程,是元分析中的一个常见操作。
典型生态项目
-
元分析基础教育:利用本书作为教材,在学术界和行业工作坊中教授元分析的基础,促进R语言在研究合成领域的应用。
-
研究团队合作:研究团队可以通过共享和协作编辑这本书的RMarkdown文档,来标准化他们的元分析流程和报告标准。
-
定制化元分析工具开发:开发者可以借鉴项目中提供的代码,开发特定领域内的元分析软件包或脚本,优化分析流程。
这个指南提供了从零开始使用《用R进行元分析:实战指南》项目的框架,从基本设置到实际应用的步骤,帮助研究者快速掌握R语言下元分析的实践技巧。深入探索项目,你会发现更多元分析的宝藏。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00