**做R语言下的元分析:实战指南**
项目介绍
本项目是《用R进行元分析:实战指南》一书的所有R代码及源文件的公开存储库。它旨在成为非专家也能轻松上手的元分析入门材料,通过本书,读者可以学会如何在R环境中执行元分析的关键步骤,包括效应量合并、森林图展示、异质性诊断、亚组分析、元回归、发表偏倚控制方法以及风险偏倚评估等。高级但极其实用的主题,如网络元分析、多/三层元分析、贝叶斯元分析方法和结构方程模型元分析也涵盖其中。所有编程和统计背景知识都以易于理解的方式呈现,并且该书已由Chapman & Hall/CRC出版社(Taylor & Francis集团)出版实体版。
项目基于[rmarkdown]和[bookdown]构建,公式利用MathJax渲染,全部资料和源码均可在此仓库中找到。尽管鼓励分享和复用内容,但仓库主要设为“只读”,不常规接受PR,建议通过邮件联系作者进行交流。
项目快速启动
要快速启动并利用此项目,首先确保你的计算机安装了R语言环境和RStudio。之后,通过以下步骤开始:
# 在R环境下安装必要的包
install.packages(c("meta", "dmetar", "bookdown"))
# 克隆项目到本地
git clone https://github.com/MathiasHarrer/Doing-Meta-Analysis-in-R.git
# 导入项目到RStudio并查看或运行示例代码
library(bookdown)
setwd("Doing-Meta-Analysis-in-R")
render_book("index.Rmd", output_format = "bookdown::pdf_book")
这将编译书籍的PDF版本,让你能够浏览所有教程和代码示例。
应用案例和最佳实践
示例:效应量合并基础
作为一个应用案例,考虑合并多个研究中的标准化均值差。遵循书中指导,你可以这样做:
library(meta)
# 假设data是已经导入的研究数据集,含effectSize和variance列
my数据分析 <- meta::metagen(
effectSize = data$effectSize,
var.eff.size = data$variance,
studlab = paste("Study", 1:nrow(data)),
method = "random"
)
summary(my数据分析)
这个命令展示了采用随机效应模型合并效应量的基本过程,是元分析中的一个常见操作。
典型生态项目
-
元分析基础教育:利用本书作为教材,在学术界和行业工作坊中教授元分析的基础,促进R语言在研究合成领域的应用。
-
研究团队合作:研究团队可以通过共享和协作编辑这本书的RMarkdown文档,来标准化他们的元分析流程和报告标准。
-
定制化元分析工具开发:开发者可以借鉴项目中提供的代码,开发特定领域内的元分析软件包或脚本,优化分析流程。
这个指南提供了从零开始使用《用R进行元分析:实战指南》项目的框架,从基本设置到实际应用的步骤,帮助研究者快速掌握R语言下元分析的实践技巧。深入探索项目,你会发现更多元分析的宝藏。
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript042GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX00PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython08
热门内容推荐
最新内容推荐
项目优选









