**做R语言下的元分析:实战指南**
项目介绍
本项目是《用R进行元分析:实战指南》一书的所有R代码及源文件的公开存储库。它旨在成为非专家也能轻松上手的元分析入门材料,通过本书,读者可以学会如何在R环境中执行元分析的关键步骤,包括效应量合并、森林图展示、异质性诊断、亚组分析、元回归、发表偏倚控制方法以及风险偏倚评估等。高级但极其实用的主题,如网络元分析、多/三层元分析、贝叶斯元分析方法和结构方程模型元分析也涵盖其中。所有编程和统计背景知识都以易于理解的方式呈现,并且该书已由Chapman & Hall/CRC出版社(Taylor & Francis集团)出版实体版。
项目基于[rmarkdown]和[bookdown]构建,公式利用MathJax渲染,全部资料和源码均可在此仓库中找到。尽管鼓励分享和复用内容,但仓库主要设为“只读”,不常规接受PR,建议通过邮件联系作者进行交流。
项目快速启动
要快速启动并利用此项目,首先确保你的计算机安装了R语言环境和RStudio。之后,通过以下步骤开始:
# 在R环境下安装必要的包
install.packages(c("meta", "dmetar", "bookdown"))
# 克隆项目到本地
git clone https://github.com/MathiasHarrer/Doing-Meta-Analysis-in-R.git
# 导入项目到RStudio并查看或运行示例代码
library(bookdown)
setwd("Doing-Meta-Analysis-in-R")
render_book("index.Rmd", output_format = "bookdown::pdf_book")
这将编译书籍的PDF版本,让你能够浏览所有教程和代码示例。
应用案例和最佳实践
示例:效应量合并基础
作为一个应用案例,考虑合并多个研究中的标准化均值差。遵循书中指导,你可以这样做:
library(meta)
# 假设data是已经导入的研究数据集,含effectSize和variance列
my数据分析 <- meta::metagen(
effectSize = data$effectSize,
var.eff.size = data$variance,
studlab = paste("Study", 1:nrow(data)),
method = "random"
)
summary(my数据分析)
这个命令展示了采用随机效应模型合并效应量的基本过程,是元分析中的一个常见操作。
典型生态项目
-
元分析基础教育:利用本书作为教材,在学术界和行业工作坊中教授元分析的基础,促进R语言在研究合成领域的应用。
-
研究团队合作:研究团队可以通过共享和协作编辑这本书的RMarkdown文档,来标准化他们的元分析流程和报告标准。
-
定制化元分析工具开发:开发者可以借鉴项目中提供的代码,开发特定领域内的元分析软件包或脚本,优化分析流程。
这个指南提供了从零开始使用《用R进行元分析:实战指南》项目的框架,从基本设置到实际应用的步骤,帮助研究者快速掌握R语言下元分析的实践技巧。深入探索项目,你会发现更多元分析的宝藏。
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04