ChatGLM3多轮对话模板使用问题解析
2025-05-16 17:53:41作者:温艾琴Wonderful
问题背景
在使用ChatGLM3模型进行多轮对话时,部分开发者遇到了输出结果异常的问题。具体表现为生成的文本中包含了<|user|>、<|assistant|>等特殊标记字符,且整体输出质量较差。这种情况通常与模板处理和防注入机制有关。
问题分析
从技术角度来看,这个问题主要涉及以下几个方面:
-
模板处理机制:ChatGLM3采用了特定的对话模板格式来组织多轮对话内容。正确的模板处理应该能够自动识别和转换角色标记。
-
防注入机制:模型内置了防止提示注入的安全措施,这可能会影响模板的正常解析。
-
vLLM集成:当使用vLLM推理引擎时,需要特别注意模板处理与推理引擎的兼容性问题。
解决方案
正确的模板处理方式
对于ChatGLM3模型,推荐使用以下方式构建多轮对话提示:
-
消息格式标准化:确保输入的消息列表符合标准格式,每个消息对象包含"role"和"content"字段。
-
使用内置模板:通过tokenizer的
apply_chat_template方法自动应用正确的对话模板。 -
防注入处理:确保在模板处理过程中不会意外触发模型的防注入机制。
代码实现示例
def build_chatglm3_prompt(messages):
"""
构建ChatGLM3兼容的多轮对话提示
参数:
messages: 消息列表,每个元素应包含"role"和"content"字段
返回:
格式化后的完整提示字符串
"""
# 标准化消息格式
processed_messages = []
for msg in messages:
role = msg.get("role", "").strip()
content = msg.get("content", "").strip()
if role and content:
processed_messages.append({"role": role, "content": content})
# 应用聊天模板
prompt = tokenizer.apply_chat_template(
processed_messages,
tokenize=False,
add_generation_prompt=True # 确保添加生成提示
)
return prompt
vLLM集成注意事项
当与vLLM一起使用时,需要特别注意:
-
版本兼容性:确保使用的vLLM版本支持ChatGLM3的模板格式。
-
特殊标记处理:vLLM可能需要对ChatGLM3的特殊标记进行额外配置。
-
模板验证:在实际使用前,建议先验证生成的模板是否符合预期。
最佳实践建议
-
模板验证:在实际使用前,先打印输出生成的完整提示,检查是否符合预期格式。
-
逐步测试:从简单对话开始测试,逐步增加复杂度。
-
版本检查:确保使用的ChatGLM3和vLLM都是最新版本。
-
错误处理:添加适当的错误处理机制,捕获并记录模板处理过程中的异常。
通过以上方法,可以有效地解决ChatGLM3在多轮对话中出现的模板处理问题,获得更稳定、更高质量的生成结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178