ChatGLM3多轮对话模板使用问题解析
2025-05-16 03:23:33作者:温艾琴Wonderful
问题背景
在使用ChatGLM3模型进行多轮对话时,部分开发者遇到了输出结果异常的问题。具体表现为生成的文本中包含了<|user|>、<|assistant|>等特殊标记字符,且整体输出质量较差。这种情况通常与模板处理和防注入机制有关。
问题分析
从技术角度来看,这个问题主要涉及以下几个方面:
-
模板处理机制:ChatGLM3采用了特定的对话模板格式来组织多轮对话内容。正确的模板处理应该能够自动识别和转换角色标记。
-
防注入机制:模型内置了防止提示注入的安全措施,这可能会影响模板的正常解析。
-
vLLM集成:当使用vLLM推理引擎时,需要特别注意模板处理与推理引擎的兼容性问题。
解决方案
正确的模板处理方式
对于ChatGLM3模型,推荐使用以下方式构建多轮对话提示:
-
消息格式标准化:确保输入的消息列表符合标准格式,每个消息对象包含"role"和"content"字段。
-
使用内置模板:通过tokenizer的
apply_chat_template方法自动应用正确的对话模板。 -
防注入处理:确保在模板处理过程中不会意外触发模型的防注入机制。
代码实现示例
def build_chatglm3_prompt(messages):
"""
构建ChatGLM3兼容的多轮对话提示
参数:
messages: 消息列表,每个元素应包含"role"和"content"字段
返回:
格式化后的完整提示字符串
"""
# 标准化消息格式
processed_messages = []
for msg in messages:
role = msg.get("role", "").strip()
content = msg.get("content", "").strip()
if role and content:
processed_messages.append({"role": role, "content": content})
# 应用聊天模板
prompt = tokenizer.apply_chat_template(
processed_messages,
tokenize=False,
add_generation_prompt=True # 确保添加生成提示
)
return prompt
vLLM集成注意事项
当与vLLM一起使用时,需要特别注意:
-
版本兼容性:确保使用的vLLM版本支持ChatGLM3的模板格式。
-
特殊标记处理:vLLM可能需要对ChatGLM3的特殊标记进行额外配置。
-
模板验证:在实际使用前,建议先验证生成的模板是否符合预期。
最佳实践建议
-
模板验证:在实际使用前,先打印输出生成的完整提示,检查是否符合预期格式。
-
逐步测试:从简单对话开始测试,逐步增加复杂度。
-
版本检查:确保使用的ChatGLM3和vLLM都是最新版本。
-
错误处理:添加适当的错误处理机制,捕获并记录模板处理过程中的异常。
通过以上方法,可以有效地解决ChatGLM3在多轮对话中出现的模板处理问题,获得更稳定、更高质量的生成结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C069
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
68
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
841
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
434
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119