Langchain-Chatchat项目中GLM-4-9b-chat模型运行问题分析与解决方案
问题背景
在Langchain-Chatchat项目中使用GLM-4-9b-chat模型时,开发者遇到了一个典型的问题:模型在对话过程中会出现自问自答且无法停止的情况。这种现象严重影响了模型的正常使用体验,需要深入分析其根本原因并找到有效的解决方案。
问题分析
经过技术社区的深入探讨,发现该问题主要由以下几个因素导致:
-
FastChat兼容性问题:当前版本的FastChat尚未完全兼容GLM-4模型,导致在处理用户输入时使用了错误的prompt格式和问答结构。
-
模型路径命名冲突:当模型路径中包含"chatglm"字样时,FastChat会错误地使用ChatGLM的prompt格式来处理GLM-4模型的输入输出。
-
消息处理逻辑缺陷:原有的消息恢复函数(recover_message_list)在处理GLM-4输入时存在逻辑缺陷,导致模型接收到的query内容为空,从而引发自问自答现象。
解决方案
方案一:模型路径重命名法
最简单的解决方案是修改模型路径,确保不包含"chatglm"字样。例如将原路径"/home/model/glm-4-9b-chat/"修改为不包含"chatglm"的新路径。这种方法虽然简单,但可能无法完全解决所有问题。
方案二:代码修改法(推荐)
更彻底的解决方案是修改FastChat的相关源代码,主要包括以下文件:
- model_chatglm.py修改:
# 在generate_stream_chatglm函数中添加GLM-4处理分支
elif "glm-4" in model_type:
message_list = recover_message_list(prompt)
inputs = tokenizer.apply_chat_template(
message_list, tokenize=True, return_tensors="pt",
return_dict=True, add_generation_prompt=True
).to(model.device)
- model_adapter.py修改:
# 修改模型适配判断条件
if "chatglm3" or 'glm-4' in model_path.lower():
# 特殊处理逻辑
- conversation.py修改: 需要添加GLM-4特有的对话模板和分隔符样式,包括:
- 添加CHATGLM4到SeparatorStyle枚举
- 实现GLM-4特有的消息拼接逻辑
- 注册GLM-4对话模板
方案三:输出处理优化
针对模型输出末尾出现多余标记的问题,可以在解码时添加skip_special_tokens参数:
response = tokenizer.decode(output_ids, skip_special_tokens=True)
技术原理深入
GLM-4模型采用了与之前版本不同的对话模板机制,其核心特点包括:
-
消息结构:使用
<|system|>
,<|user|>
,<|assistant|>
等特殊标记来区分不同角色的消息。 -
停止标记:模型使用特定的token(64795, 64797, 2)作为对话结束的标记。
-
模板应用:通过tokenizer.apply_chat_template方法将对话历史转换为模型可理解的输入格式。
最佳实践建议
-
模型命名规范:建议将模型文件夹命名为"chatglm-4-9b-chat",以保持一致性。
-
完整修改方案:推荐采用方案二的完整代码修改,这是目前最稳定的解决方案。
-
测试验证:修改后应测试以下功能:
- 单轮对话是否正常
- 多轮对话上下文是否保持
- 模型输出是否完整且无多余标记
- 对话能否正常结束
总结
GLM-4-9b-chat模型在Langchain-Chatchat项目中的运行问题主要源于框架兼容性和消息处理逻辑的不匹配。通过分析模型特性和修改相关代码,可以有效解决自问自答和输出异常等问题。随着GLM-4模型的普及,预计FastChat等框架会逐步增加原生支持,届时这些问题将得到更彻底的解决。
对于开发者而言,理解模型与框架的交互机制至关重要。本文提供的解决方案不仅适用于当前问题,也为处理类似的大模型集成问题提供了参考思路。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0296- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









