Argo Rollouts中基于Istio子集的流量路由问题解析
问题背景
在使用Argo Rollouts进行金丝雀部署时,发现了一个与Istio子集路由相关的流量分配问题。具体表现为:当通过Kubernetes内部服务访问应用时,流量分配基于Pod数量而非配置的权重比例;而通过外部虚拟服务访问时,流量分配则按预期工作。
现象分析
在测试环境中部署了一个使用Istio子集策略的金丝雀发布示例。配置中设置了10%的流量权重给金丝雀版本,90%给稳定版本。当通过内部Kubernetes服务(如istio-rollout.rollouts-demo-istio.svc.cluster.local)访问时,实际流量分配变成了50%对50%,这与预期的10%/90%分配不符。
根本原因
这个问题实际上是由Kubernetes服务和Istio虚拟服务的不同工作机制导致的:
-
Kubernetes服务:原生服务基于简单的标签选择器进行流量路由,默认采用轮询(round-robin)算法在匹配的Pod间分配流量。当金丝雀和稳定版本各有一个Pod时,自然就会形成50%/50%的分配比例。
-
Istio虚拟服务:通过更精细的流量管理规则,能够实现基于权重的精确流量分配。Argo Rollouts正是通过调整虚拟服务的配置来实现金丝雀发布的流量控制。
解决方案
要解决内部访问的流量分配问题,有以下几种方法:
-
使用虚拟服务进行内部访问:不仅为外部访问配置虚拟服务,也为内部访问配置相应的虚拟服务规则。这样无论从集群内部还是外部访问,都能获得一致的流量分配行为。
-
调整Pod副本数比例:虽然不推荐,但可以通过调整金丝雀和稳定版本的Pod数量来近似实现所需的流量比例。例如,想要10%/90%的分配,可以设置金丝雀1个Pod,稳定版本9个Pod。
-
使用服务网格功能:充分利用Istio的服务网格能力,确保所有流量(包括集群内部通信)都经过Envoy代理,从而能够应用精细的流量管理策略。
最佳实践建议
-
在微服务架构中,建议所有服务间通信都通过服务网格进行,确保一致的流量管理策略。
-
对于关键的金丝雀发布场景,应该统一使用虚拟服务进行流量管理,避免直接依赖Kubernetes原生服务的简单路由机制。
-
在测试金丝雀发布效果时,应该使用与生产环境一致的访问方式,避免因测试环境配置不同而导致结果偏差。
总结
这个问题揭示了Kubernetes原生服务与高级流量管理工具之间的差异。理解这些底层机制对于正确实施金丝雀发布策略至关重要。通过合理配置Istio虚拟服务,可以确保无论从集群内部还是外部访问,都能获得一致的、基于权重的流量分配效果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00