使用fuzzywuzzy进行模糊字符串匹配教程
2024-08-16 05:02:53作者:庞队千Virginia
项目介绍
fuzzywuzzy 是一个在 Python 中用于执行模糊字符串匹配的库。它特别适用于在不完全相同但非常相似的文本串之间寻找最佳匹配。该库通过计算Levenshtein距离来评估字符串之间的差异,从而帮助开发者处理拼写错误、缩写或简称等引起的匹配问题。fuzzywuzzy最初由SeatGeek开发并开源,尽管原始仓库地址有所更新,但现在可从 新地址 访问。值得注意的是,为了更高效地运行,推荐同时安装 python-Levenshtein 库。
项目快速启动
首先,确保你的环境中已安装 Python 2.7 或更高版本(虽然现代应用中应优先考虑 Python 3.x)。然后,通过以下命令安装 fuzzywuzzy 及其依赖库:
pip install fuzzywuzzy
pip install python-Levenshtein
一旦安装完成,你可以立即开始使用 fuzzywuzzy 来进行各种类型的字符串匹配。以下是几个基本的使用示例:
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
# 简单比例匹配
print(fuzz.ratio("this is a test", "this is a test")) # 输出应该接近100
# 部分比例匹配
print(fuzz.partial_ratio("this is a test", "this was a test"))
# 令牌排序比例匹配
print(fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear"))
# 进行搜索和匹配的最佳实践
choices = ["apple", "ape", "orange"]
best_match, confidence = process.extractOne("appel", choices)
print(f"Best match for 'appel': {best_match} with confidence {confidence}%")
这段代码演示了如何比较字符串的相似度以及如何从一组选项中找到最佳匹配项。
应用案例和最佳实践
场景一:拼写纠正和建议
在用户输入可能含有拼写错误的数据时,如搜索引擎查询,fuzzywuzzy可以帮助提供近似正确的查询建议。
场景二:数据清洗
在处理数据库或CSV文件中的不一致条目时,例如客户名称或地址,可以利用fuzzywuzzy匹配相似记录,辅助进行合并或去重操作。
最佳实践
- 优化性能: 对于大型数据集,考虑使用
process.extract()或process.crf_extract()方法,它们能够高效处理多个匹配。 - 预处理文本: 清洗数据,去除噪音(如标点符号、停用词),标准化大小写,以提高匹配精度。
- 理解评分: 明确Levenshtein距离和其他比较函数的意义,合理设置阈值。
典型生态项目
虽然直接关联的生态项目没有明确列出,但fuzzywuzzy常被用于数据分析、NLP(自然语言处理)、以及任何需要对文本进行智能匹配的场景。例如,在开发CRM系统时,它可以整合进数据清理模块;或者在构建自动标签系统时,帮助识别和归类相似文本条目。
以上是关于fuzzywuzzy的基本使用指南和一些高级应用思路。通过这个强大的工具,你可以有效地解决文本处理中的复杂匹配问题。记得实践中结合具体需求调整策略,以达到最佳效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178