使用fuzzywuzzy进行模糊字符串匹配教程
2024-08-16 02:44:31作者:庞队千Virginia
项目介绍
fuzzywuzzy 是一个在 Python 中用于执行模糊字符串匹配的库。它特别适用于在不完全相同但非常相似的文本串之间寻找最佳匹配。该库通过计算Levenshtein距离来评估字符串之间的差异,从而帮助开发者处理拼写错误、缩写或简称等引起的匹配问题。fuzzywuzzy最初由SeatGeek开发并开源,尽管原始仓库地址有所更新,但现在可从 新地址 访问。值得注意的是,为了更高效地运行,推荐同时安装 python-Levenshtein 库。
项目快速启动
首先,确保你的环境中已安装 Python 2.7 或更高版本(虽然现代应用中应优先考虑 Python 3.x)。然后,通过以下命令安装 fuzzywuzzy 及其依赖库:
pip install fuzzywuzzy
pip install python-Levenshtein
一旦安装完成,你可以立即开始使用 fuzzywuzzy 来进行各种类型的字符串匹配。以下是几个基本的使用示例:
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
# 简单比例匹配
print(fuzz.ratio("this is a test", "this is a test")) # 输出应该接近100
# 部分比例匹配
print(fuzz.partial_ratio("this is a test", "this was a test"))
# 令牌排序比例匹配
print(fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear"))
# 进行搜索和匹配的最佳实践
choices = ["apple", "ape", "orange"]
best_match, confidence = process.extractOne("appel", choices)
print(f"Best match for 'appel': {best_match} with confidence {confidence}%")
这段代码演示了如何比较字符串的相似度以及如何从一组选项中找到最佳匹配项。
应用案例和最佳实践
场景一:拼写纠正和建议
在用户输入可能含有拼写错误的数据时,如搜索引擎查询,fuzzywuzzy可以帮助提供近似正确的查询建议。
场景二:数据清洗
在处理数据库或CSV文件中的不一致条目时,例如客户名称或地址,可以利用fuzzywuzzy匹配相似记录,辅助进行合并或去重操作。
最佳实践
- 优化性能: 对于大型数据集,考虑使用
process.extract()或process.crf_extract()方法,它们能够高效处理多个匹配。 - 预处理文本: 清洗数据,去除噪音(如标点符号、停用词),标准化大小写,以提高匹配精度。
- 理解评分: 明确Levenshtein距离和其他比较函数的意义,合理设置阈值。
典型生态项目
虽然直接关联的生态项目没有明确列出,但fuzzywuzzy常被用于数据分析、NLP(自然语言处理)、以及任何需要对文本进行智能匹配的场景。例如,在开发CRM系统时,它可以整合进数据清理模块;或者在构建自动标签系统时,帮助识别和归类相似文本条目。
以上是关于fuzzywuzzy的基本使用指南和一些高级应用思路。通过这个强大的工具,你可以有效地解决文本处理中的复杂匹配问题。记得实践中结合具体需求调整策略,以达到最佳效果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
213
226
暂无简介
Dart
659
150
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
293
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
489
React Native鸿蒙化仓库
JavaScript
251
320
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
79
104
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1