MyBatis-Plus 长SQL查询性能问题分析与优化实践
2025-05-13 16:56:59作者:伍希望
问题现象
在使用MyBatis-Plus 3.5.3.2版本的项目中,开发人员遇到了一个特殊的性能问题:当执行包含复杂子查询和UNION操作的长SQL语句时,项目刚启动时查询速度正常(20-200ms),但随着运行时间增长(约一天后),查询性能急剧下降至20-30秒,同时伴随CPU使用率飙升。重启应用后问题暂时消失。
问题SQL分析
问题SQL是一个复杂的统计查询,主要特点包括:
- 包含多个子查询和UNION ALL操作
- 涉及三张表的关联统计(mt_order, mt_order_refund, third_party_verify_record)
- 使用日期分组统计和复杂的条件判断
- 包含动态条件(poiIds集合参数)
SQL结构大致分为三个主要部分,每部分都包含子查询并通过UNION ALL组合结果,最后进行排序输出。
可能原因分析
1. SQL解析缓存问题
MyBatis会对SQL进行解析和缓存,复杂的SQL可能会占用较多缓存资源。随着时间推移,缓存管理可能出现问题,导致每次执行都需要重新解析SQL。
2. 连接池配置不当
项目使用HikariCP连接池,配置了最大50个连接。可能出现:
- 连接泄漏导致可用连接减少
- 连接回收不及时
- 连接验证开销过大
3. 结果集处理开销
该查询返回几百行数据,MyBatis需要将这些结果映射为Java对象。随着运行时间增长,可能因内存管理问题导致对象创建开销增大。
4. 参数处理问题
SQL中使用${}直接拼接参数而非预编译的#{},虽然这不是性能问题的直接原因,但可能影响SQL执行计划缓存。
5. JVM内存问题
长时间运行后可能出现内存碎片或特定区域(如老年代)占用过高,影响对象创建和垃圾回收效率。
解决方案建议
1. 升级相关组件
- 将MyBatis-Plus升级到最新稳定版
- 更新数据库驱动到最新版本
- 考虑使用性能更好的连接池(如Druid)
2. 优化SQL实现
- 考虑将复杂SQL拆分为多个简单查询,在Java层组装结果
- 使用存储过程替代复杂查询
- 添加适当的索引优化查询性能
3. 调整连接池配置
# 增加泄漏检测阈值
spring.datasource.hikari.leak-detection-threshold=60000
# 调整连接生命周期
spring.datasource.hikari.max-lifetime=600000
spring.datasource.hikari.idle-timeout=300000
4. 监控措施
- 实施SQL执行监控,记录执行时间和参数
- 添加JVM内存监控,观察GC行为
- 使用连接池监控功能检查连接状态
5. 代码层面优化
- 对大数据量结果集考虑使用流式查询
- 检查实体类映射配置,确保没有不必要的复杂类型处理
- 考虑使用MyBatis的二级缓存(需谨慎评估适用性)
预防措施
- 对复杂查询实施性能基准测试
- 建立长期运行测试环境模拟生产情况
- 实施全面的应用性能监控(APM)
- 定期进行JVM性能调优
- 建立查询评审机制,控制SQL复杂度
总结
MyBatis-Plus项目中长SQL查询的性能问题通常是多方面因素共同作用的结果。通过系统性的分析和有针对性的优化,可以有效解决这类性能衰减问题。关键在于建立完整的监控体系,确保能够快速定位性能瓶颈,并采取适当的优化措施。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443