Prometheus Operator与OpenSearch Prometheus Exporter插件集成实践
概述
在Kubernetes环境中监控OpenSearch集群时,Prometheus Operator与OpenSearch Prometheus Exporter插件的组合是一种常见方案。本文将详细介绍这两者的集成原理、常见问题及解决方案。
核心组件介绍
Prometheus Operator
Prometheus Operator是Kubernetes上管理Prometheus监控系统的专用Operator。它简化了Prometheus实例的部署和管理,通过自定义资源定义(CRD)如Prometheus、ServiceMonitor等来实现声明式配置。
OpenSearch Prometheus Exporter插件
这是OpenSearch官方提供的插件,用于将OpenSearch集群的监控指标暴露为Prometheus可抓取的格式。插件安装后会自动创建/metrics端点,并可选地生成ServiceMonitor资源。
集成工作原理
-
插件部署阶段:当在OpenSearch集群中启用Prometheus Exporter插件时,插件会自动配置/metrics端点并生成ServiceMonitor资源。
-
Operator感知阶段:Prometheus Operator会监听集群中的ServiceMonitor资源变化。当检测到新的ServiceMonitor时,Operator会更新Prometheus配置,使其开始抓取对应的指标。
-
证书验证问题:由于OpenSearch通常使用HTTPS,Prometheus在抓取指标时需要处理证书验证问题。默认情况下会进行严格验证,这在测试环境或使用自签名证书时可能导致问题。
常见问题解决方案
ServiceMonitor自动管理问题
OpenSearch Prometheus Exporter插件创建的ServiceMonitor实际上由OpenSearch Operator管理,而非Prometheus Operator。这解释了为什么手动修改ServiceMonitor后会被自动恢复。
忽略证书验证的正确方式
要在Prometheus抓取指标时忽略证书验证,应在OpenSearch的配置中添加以下参数:
monitoring:
tlsConfig:
insecureSkipVerify: true
这一配置需要添加到OpenSearch的部署配置中,而非直接修改ServiceMonitor,因为后者会被OpenSearch Operator自动恢复。
最佳实践建议
-
明确组件职责:理解Prometheus Operator只负责管理Prometheus实例,而ServiceMonitor的实际管理方是OpenSearch Operator。
-
配置层次清晰:与证书验证相关的配置应放在OpenSearch的部署配置中,而非事后修改生成的资源。
-
生产环境安全:在测试环境可以使用insecureSkipVerify,但在生产环境应配置正确的CA证书。
-
版本兼容性:确保Prometheus Operator版本与OpenSearch插件版本兼容,避免因API版本差异导致的问题。
总结
通过理解Prometheus Operator与OpenSearch Prometheus Exporter插件各自的管理边界和工作原理,可以更有效地解决集成过程中遇到的问题。关键是要认识到ServiceMonitor的生命周期管理方是OpenSearch Operator,因此相关配置应通过OpenSearch的声明式配置来完成,而非直接修改生成的资源。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00