Apache TrafficServer 10.1版本中的源端连接复用问题分析
Apache TrafficServer是一款高性能的开源网络加速和缓存服务器。在10.1版本中,用户报告了一个关于源端(origin)连接无法复用的严重问题,这直接影响了服务器的性能和资源利用率。本文将深入分析该问题的技术背景、原因及解决方案。
问题现象
在TrafficServer 10.1版本的生产环境部署中,运维人员观察到以下两个关键指标显示几乎没有源端连接复用:
- 出站请求计数(proxy.process.http.outgoing_requests)
- 服务器总连接数(proxy.process.http.total_server_connections)
这种情况在使用全局连接池共享(proxy.config.http.server_session_sharing.pool)的环境中尤为明显。连接无法复用意味着每次请求都需要建立新的TCP连接,增加了延迟和服务器负载。
技术背景
TrafficServer通过连接池机制来复用与源服务器的连接,这是提高性能的关键技术。连接池需要正确识别和管理每个连接的目标服务器信息,特别是当使用SNI(Server Name Indication)扩展时。
SNI是TLS协议的扩展,允许客户端在握手阶段就指明它要连接的主机名,这对虚拟主机的支持至关重要。在TrafficServer中,SNI信息用于匹配和复用连接。
问题根源
通过代码回退测试,确认问题源于对NetVConnection类的修改,特别是移除了与服务器名称相关的功能。具体来说:
-
原本使用NetVConnectin::get_sni_servername()方法,该方法内部调用OpenSSL的SSL_get_servername()函数,这个函数对入站和出站连接都有效。
-
修改后使用TLSSNISupport::get_sni_server_name,但这个方法只对入站连接有效,因为_sni_server_name成员变量只在入站连接时设置。
这种改变导致连接池无法正确识别出站连接的SNI信息,从而无法找到匹配的连接进行复用。
解决方案
正确的解决方案应该是在建立出站连接时,当调用SSL_set_tlsext_host_name设置SNI主机名时,同时更新TLSSNISupport中的_sni_server_name。这可以通过以下方式实现:
-
让TLSSNISupport类提供一个封装函数,内部同时调用SSL_set_tlsext_host_name和设置_sni_server_name。
-
确保所有出站连接的SNI信息都被正确记录,使连接池能够基于SNI信息进行匹配。
影响与修复
该问题在10.1版本中被引入,影响了所有使用SNI和连接池共享的环境。修复后,连接复用率恢复正常,显著降低了建立新连接的开销。
对于生产环境,建议受影响的用户升级到包含修复的版本,或者回退相关修改。该问题的修复也提醒我们在重构网络核心组件时需要全面考虑各种使用场景,特别是涉及性能关键路径的部分。
最佳实践
对于类似的高性能网络加速服务器:
- 连接复用是性能优化的关键,需要仔细测试相关指标
- SNI信息管理需要统一处理入站和出站连接
- 核心网络组件的修改需要全面的回归测试
- 生产环境升级前应充分验证关键性能指标
通过这次问题的分析和解决,TrafficServer的连接池机制得到了进一步的完善,为后续版本提供了更稳定的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00