Koma项目中的N维数组使用指南
2025-06-24 10:26:41作者:史锋燃Gardner
概述
在科学计算和数据处理领域,N维数组是一种基础且强大的数据结构。Koma项目提供了一个灵活的NDArray实现,能够高效地处理任意维度的数据容器。本文将详细介绍如何在Koma中使用N维数组,包括创建、迭代、形状操作和数值计算等核心功能。
N维数组的创建
Koma提供了多种创建NDArray的方式,支持泛型类型和特定数值类型的优化实现。
泛型数组创建
// 创建3x4x5的String类型数组,初始值为null
NDArray.createGenericNulls<String>(3,4,5)
// 创建3x4x5的String类型数组,所有元素初始化为"hello"
NDArray.createGeneric(3,4,5) { "hello" }
// 创建1x2的String类型数组,元素值为"hi"加上索引和
NDArray.createGeneric(1,2) { indices -> "hi ${indices.sum()}" }
// 创建3x4x5的Float类型数组,所有元素初始化为4.5
NDArray.createGeneric(3,4,5) { 4.5f }
数值类型优化创建
对于数值类型,Koma提供了专门的工厂方法,避免了装箱操作,显著提高了性能:
// 创建3x5x6的双精度浮点数组,初始值为0
NDArray.doubleFactory.zeros(3,5,6)
// 创建3x5x6的单精度浮点数组,值为均匀分布的随机数
NDArray.floatFactory.rand(3,5,6)
// 创建1x2x3x4x5的整型数组,初始值为1
NDArray.intFactory.ones(1,2,3,4,5)
// 创建8x8的双精度浮点数组,值为正态分布的随机数
NDArray.doubleFactory.randn(8,8)
数组迭代
N维数组中的每个元素都有两种索引表示方式:N维索引和线性索引。
基本迭代方式
val a: NDArray<Double> = NDArray.doubleFactory.randn(3,5,6)
// 简单迭代,不获取索引
a.forEach { println("元素值为 $it") }
// 带线性索引的迭代
a.forEachIndexed { idx, ele -> println("线性索引$idx处的元素为$ele") }
// 带N维索引的迭代
a.forEachIndexedN { indices, value ->
println("位置(${indices.joinToString(",")})的元素为$value")
}
映射操作
val a: NDArray<Float> = NDArray.floatFactory.ones(3,5,6)
// 所有元素加1
a.map { ele -> ele + 1.0f }
// 元素值加上其线性索引
a.mapIndexed { idx, ele -> ele + idx }
// 将元素值设为其N维索引的和
a.mapIndexedN { idx, ele -> idx.sum().toFloat() }
数组形状操作
获取和改变形状
val a: NDArray<Float> = NDArray.floatFactory.ones(3,5,6)
// 获取当前形状
val shape = a.shape() // 返回arrayOf(3,5,6)
// 改变形状
val b = a.reshape(6,3,5)
注意:重塑操作必须保持元素总数不变,否则会抛出异常。
形状重塑的特性
重塑操作会保持元素的线性顺序,只是重新解释其N维索引:
val original = NDArray.floatFactory.rand(3,5,6)
val reshaped1 = original.reshape(6,3,5)
val reshaped2 = original.reshape(1,90)
// 线性迭代结果相同
original.toIterable().forEach {
assert(it == reshaped1.next() && it == reshaped2.next())
}
数值运算
对于数值类型的NDArray,Koma支持基本的数值运算:
val a = NDArray.floatFactory.rand(3,5,6)
val b = 3 * a + a * a // 逐元素运算
注意:线性代数运算(如矩阵乘法)不适用于NDArray,因为它们需要特定的二维结构。
类型转换
转换为矩阵
NDArray可以转换为Matrix,但需要满足特定条件:
// 成功转换:2维数值数组
NDArray.floatFactory.rand(3,6).toMatrix()
// 失败情况示例
NDArray.floatFactory.rand(3,5,6).toMatrixOrNull() // 维度过多
NDArray.createGenericNulls<String>(3,4).toMatrixOrNull() // 非数值类型
类型安全考虑
对于泛型NDArray,需要使用toMatrixOrNull进行安全转换:
fun <T> safeConvert(a: NDArray<T>) = a.toMatrixOrNull()
总结
Koma的NDArray提供了强大而灵活的N维数据容器功能,无论是创建、迭代、形状操作还是数值计算,都设计得既直观又高效。通过合理使用泛型和特定数值类型的优化实现,开发者可以在保证类型安全的同时获得最佳性能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134