Koma项目中的N维数组使用指南
2025-06-24 23:04:45作者:史锋燃Gardner
概述
在科学计算和数据处理领域,N维数组是一种基础且强大的数据结构。Koma项目提供了一个灵活的NDArray实现,能够高效地处理任意维度的数据容器。本文将详细介绍如何在Koma中使用N维数组,包括创建、迭代、形状操作和数值计算等核心功能。
N维数组的创建
Koma提供了多种创建NDArray的方式,支持泛型类型和特定数值类型的优化实现。
泛型数组创建
// 创建3x4x5的String类型数组,初始值为null
NDArray.createGenericNulls<String>(3,4,5)
// 创建3x4x5的String类型数组,所有元素初始化为"hello"
NDArray.createGeneric(3,4,5) { "hello" }
// 创建1x2的String类型数组,元素值为"hi"加上索引和
NDArray.createGeneric(1,2) { indices -> "hi ${indices.sum()}" }
// 创建3x4x5的Float类型数组,所有元素初始化为4.5
NDArray.createGeneric(3,4,5) { 4.5f }
数值类型优化创建
对于数值类型,Koma提供了专门的工厂方法,避免了装箱操作,显著提高了性能:
// 创建3x5x6的双精度浮点数组,初始值为0
NDArray.doubleFactory.zeros(3,5,6)
// 创建3x5x6的单精度浮点数组,值为均匀分布的随机数
NDArray.floatFactory.rand(3,5,6)
// 创建1x2x3x4x5的整型数组,初始值为1
NDArray.intFactory.ones(1,2,3,4,5)
// 创建8x8的双精度浮点数组,值为正态分布的随机数
NDArray.doubleFactory.randn(8,8)
数组迭代
N维数组中的每个元素都有两种索引表示方式:N维索引和线性索引。
基本迭代方式
val a: NDArray<Double> = NDArray.doubleFactory.randn(3,5,6)
// 简单迭代,不获取索引
a.forEach { println("元素值为 $it") }
// 带线性索引的迭代
a.forEachIndexed { idx, ele -> println("线性索引$idx处的元素为$ele") }
// 带N维索引的迭代
a.forEachIndexedN { indices, value ->
println("位置(${indices.joinToString(",")})的元素为$value")
}
映射操作
val a: NDArray<Float> = NDArray.floatFactory.ones(3,5,6)
// 所有元素加1
a.map { ele -> ele + 1.0f }
// 元素值加上其线性索引
a.mapIndexed { idx, ele -> ele + idx }
// 将元素值设为其N维索引的和
a.mapIndexedN { idx, ele -> idx.sum().toFloat() }
数组形状操作
获取和改变形状
val a: NDArray<Float> = NDArray.floatFactory.ones(3,5,6)
// 获取当前形状
val shape = a.shape() // 返回arrayOf(3,5,6)
// 改变形状
val b = a.reshape(6,3,5)
注意:重塑操作必须保持元素总数不变,否则会抛出异常。
形状重塑的特性
重塑操作会保持元素的线性顺序,只是重新解释其N维索引:
val original = NDArray.floatFactory.rand(3,5,6)
val reshaped1 = original.reshape(6,3,5)
val reshaped2 = original.reshape(1,90)
// 线性迭代结果相同
original.toIterable().forEach {
assert(it == reshaped1.next() && it == reshaped2.next())
}
数值运算
对于数值类型的NDArray,Koma支持基本的数值运算:
val a = NDArray.floatFactory.rand(3,5,6)
val b = 3 * a + a * a // 逐元素运算
注意:线性代数运算(如矩阵乘法)不适用于NDArray,因为它们需要特定的二维结构。
类型转换
转换为矩阵
NDArray可以转换为Matrix,但需要满足特定条件:
// 成功转换:2维数值数组
NDArray.floatFactory.rand(3,6).toMatrix()
// 失败情况示例
NDArray.floatFactory.rand(3,5,6).toMatrixOrNull() // 维度过多
NDArray.createGenericNulls<String>(3,4).toMatrixOrNull() // 非数值类型
类型安全考虑
对于泛型NDArray,需要使用toMatrixOrNull进行安全转换:
fun <T> safeConvert(a: NDArray<T>) = a.toMatrixOrNull()
总结
Koma的NDArray提供了强大而灵活的N维数据容器功能,无论是创建、迭代、形状操作还是数值计算,都设计得既直观又高效。通过合理使用泛型和特定数值类型的优化实现,开发者可以在保证类型安全的同时获得最佳性能。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218