Apache DolphinScheduler 子工作流任务的高可用设计与实现
背景与现状
Apache DolphinScheduler作为一款分布式易扩展的可视化工作流任务调度平台,其子工作流(SubWorkflow)功能允许用户在一个工作流中嵌套调用另一个工作流。然而在当前版本中,子工作流任务在故障转移(failover)、重复执行(repeat running)、暂停(pause)、终止(kill)和恢复(recover)等方面的实现还不够完善,这在实际生产环境中可能会带来稳定性问题。
核心问题分析
子工作流任务本质上代表了一个完整的工作流实例。当父工作流执行到子工作流任务时,会创建并跟踪子工作流实例的状态。当前实现的主要不足体现在:
- 缺乏完善的故障转移机制,当子工作流执行失败时无法自动恢复
- 对重复执行场景的支持不够完善
- 暂停/终止操作无法正确传递到子工作流实例
- 恢复操作的处理逻辑不够清晰
技术设计方案
运行时上下文设计
为了解决上述问题,我们引入了SubWorkflowLogicTaskRuntimeContext类来存储子工作流实例的关键信息:
public class SubWorkflowLogicTaskRuntimeContext {
private Integer subWorkflowInstanceId; // 子工作流实例ID
}
这个上下文对象会在子工作流任务执行时被创建和维护,用于记录子工作流实例的状态信息,为后续的各类操作提供基础。
子工作流初始化策略
子工作流的初始化需要根据不同的操作类型采取不同的策略:
private SubWorkflowLogicTaskRuntimeContext initializeSubWorkflowInstance() {
if (subWorkflowLogicTaskRuntimeContext == null) {
return triggerNewSubWorkflow(); // 全新触发子工作流
}
switch (workflowExecutionRunnable.getWorkflowInstance().getCommandType()) {
case RECOVER_SUSPENDED_PROCESS:
return recoverFromSuspendTasks(); // 从暂停状态恢复
case START_FAILURE_TASK_PROCESS:
return recoverFromFailedTasks(); // 从失败状态恢复
default:
return triggerNewSubWorkflow();
}
}
这种设计确保了无论是正常执行还是恢复操作,都能正确处理子工作流的初始化。
暂停与终止操作实现
对于暂停和终止操作,系统会通过控制接口将操作传递给子工作流实例:
@Override
public void pause() throws MasterTaskExecuteException {
if (subWorkflowLogicTaskRuntimeContext == null) return;
Integer subWorkflowInstanceId = subWorkflowLogicTaskRuntimeContext.getSubWorkflowInstanceId();
WorkflowInstancePauseResponse pauseResponse = applicationContext
.getBean(SubWorkflowControlClient.class)
.pauseWorkflowInstance(new WorkflowInstancePauseRequest(subWorkflowInstanceId));
if (pauseResponse.isSuccess()) {
log.info("Pause sub workflowInstance: id={} success", subWorkflowInstanceId);
} else {
log.info("Pause sub workflowInstance: id={} failed", subWorkflowInstanceId);
}
}
终止操作的实现逻辑类似,都是通过控制客户端将操作传递给子工作流实例,并处理返回结果。
实现优势
- 状态一致性:通过运行时上下文确保父子工作流状态同步
- 操作完整性:所有控制操作都能正确传递到子工作流
- 故障恢复能力:针对不同场景提供专门的恢复策略
- 可观测性:完善的日志记录便于问题排查
实际应用效果
该设计方案实施后,Apache DolphinScheduler的子工作流任务将具备:
- 当父工作流被暂停时,子工作流也会被正确暂停
- 当父工作流被终止时,子工作流会被正确终止
- 当父工作流从失败中恢复时,子工作流会根据配置采取合适的恢复策略
- 系统能够正确跟踪子工作流的状态变化
这种设计大大提升了复杂工作流场景下的稳定性和可靠性,特别是在需要多层嵌套工作流的业务场景中表现尤为突出。
总结
通过对子工作流任务的高可用性设计,Apache DolphinScheduler在复杂工作流管理方面迈出了重要一步。该方案不仅解决了当前版本中的关键问题,还为未来可能的扩展奠定了基础。在实际生产环境中,这种设计能够显著提高工作流系统的稳定性和可维护性,为用户提供更加可靠的任务调度服务。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00