推荐使用QUIK:实现高效4位量化推理的利器
2024-06-09 22:30:08作者:郦嵘贵Just
在深度学习领域,模型的计算效率和资源占用一直是优化的关键点。QUIK 是一个创新性的开源项目,它旨在将大部分权重和激活量后训练量化到4位,从而显著减少内存消耗和提高推理速度,而不牺牲模型性能。
项目介绍
QUIK 是一种针对大型语言模型(如GPT)进行有效4位量化的方法。该项目提供了从浮点数模型到4位量化模型的完整转换流程,同时支持在GPU上运行的基准测试,以验证性能提升。这个方法被详细描述在一篇名为“QUIK: 向4位端到端推理迈进”的论文中。
项目技术分析
QUIK 利用了一种称为GPTQ的算法来量化模型的权重,然后通过 qlinear.MixedQLinear.from_float 创建混合精度的线性层,这些新层可替代原始的全精度线性层。这种方法允许在保持高精度的同时,大幅度减小模型的存储需求,并且可以加速推理过程。
此外,项目还提供了一个用于线性层性能基准测试的工具 layer_benchmark.py,以便开发者评估不同输入大小下的性能表现。还有 fake_quant 示例目录,帮助理解并实践假量化的概念。
项目及技术应用场景
- 对于拥有大量数据处理需求的云服务提供商,QUIK 可以降低服务器的硬件要求,节省成本。
- 移动应用开发,特别是那些需要实时响应和低功耗操作的应用,如语音识别或智能助手。
- 边缘计算环境,限制了计算资源和带宽的应用,如自动驾驶汽车和物联网设备。
项目特点
- 高效量化:在4位精度下量化模型,减少了内存占用和提高了计算速度。
- 兼容性广:适用于包括LLM在内的各种大型预训练模型。
- 易于集成:提供清晰的代码示例和简单易懂的API,便于现有模型适配。
- 性能基准:内置的基准测试工具可以帮助开发者直观地了解量化对模型性能的影响。
如果你正在寻找一种优化大型语言模型推理性能的方法,那么QUIK无疑是值得尝试的。通过使用这个项目,你可以将深度学习模型推向新的效率边界,而无需牺牲其核心功能。别忘了引用他们的工作:
@article{QUIK,
title={QUIK: Towards End-to-end 4-Bit Inference on Generative Large Language Models},
author={Ashkboos, Saleh and Markov, Ilia and Frantar, Elias and Zhong, Tingxuan and Wang, Xincheng and Ren, Jie and Hoefler, Torsten and Alistarh, Dan},
journal={arXiv preprint arXiv:2310.09259},
year={2023}
}
立即安装并探索 QUIK,开启你的高效量化之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137