NgRx Signals 中引入 `watch` 函数的技术探讨
2025-05-28 15:48:07作者:谭伦延
在 Angular 生态系统中,响应式编程一直是核心话题。随着 Angular 16 引入 Signals 作为响应式原语,开发者们开始探索如何更优雅地处理状态变化和副作用。NgRx 团队近期提出了一个有趣的技术讨论:在 @ngrx/signals 包中引入 watch 函数,作为对 Angular 原生 effect 的补充方案。
背景:Angular 的 effect 机制
Angular 提供了 effect 函数来处理信号变化的副作用。其核心特点是自动依赖追踪——任何在 effect 回调中同步读取的信号都会自动成为依赖项,当这些信号变化时,effect 会重新执行。
const count = signal(0);
effect(() => {
console.log('count value', count());
});
这种隐式依赖追踪虽然强大,但在实际开发中却存在几个显著问题:
- 异步依赖丢失:如果在异步操作中读取信号值,依赖关系不会被自动追踪
- 依赖排除困难:需要使用
untracked函数来避免不必要的依赖 - 隐式依赖陷阱:任何同步调用的函数中读取的信号都会成为依赖
watch 函数的设计理念
watch 函数的核心思想是显式依赖声明。开发者需要明确指定要监听的信号,回调函数不在响应式上下文中执行,从而避免了隐式依赖的问题。
基本用法:
const count = signal(0);
watch(count, (value) => {
console.log('count value', value);
});
多信号监听:
const count1 = signal(10);
const count2 = signal(100);
watch(count1, count2, (val1, val2) => {
console.log(val1 + val2);
});
清理机制:
watch(count, () => {
console.log('count changed', count());
return () => console.log('cleanup');
});
技术对比:effect vs watch
| 特性 | effect |
watch |
|---|---|---|
| 依赖追踪方式 | 隐式自动追踪 | 显式声明 |
| 响应式上下文 | 在响应式上下文中执行 | 在普通上下文中执行 |
| 异步依赖处理 | 需要同步读取信号 | 无此限制 |
| 排除依赖 | 需要使用 untracked |
自动排除未声明的信号 |
| 代码可预测性 | 较低(依赖隐式追踪) | 较高(依赖显式声明) |
设计讨论与社区观点
这一技术讨论引发了 Angular 社区的广泛关注,主要观点分为两派:
支持方认为:
- 显式声明使代码更可预测和可维护
- 解决了
effect的隐式依赖陷阱问题 - 与其他框架(如 Vue、SolidJS)的设计一致
反对方担忧:
- 增加 API 复杂度,可能造成选择困难
- 显式声明会增加样板代码
- 可能被滥用,导致不良实践
- 核心问题应该是减少副作用的使用
实际应用场景分析
-
UI 状态同步:当需要将信号状态同步到非响应式UI库时,
watch的显式声明更安全 -
性能敏感操作:对于只在特定信号变化时才需要执行的昂贵操作,
watch能精确控制 -
第三方集成:与非 Signals 系统集成时,显式依赖更可靠
-
组合式工具函数:构建可复用的工具函数时,避免隐式依赖更可控
最佳实践建议
- 优先选择:简单场景用
effect,复杂依赖用watch - 副作用最小化:无论哪种方式,都应保持副作用精简
- 组合使用:可以将
watch与computed结合使用 - 明确边界:在组件与服务间建立清晰的响应式边界
未来展望
这一讨论反映了响应式编程领域的一个永恒课题:如何在便利性与可控性之间找到平衡。无论 watch 是否最终被纳入 NgRx,它提出的问题都值得每一位 Angular 开发者思考:
- 我们如何更好地管理响应式依赖?
- 如何在框架提供的便利性与代码的可维护性之间取得平衡?
- 什么样的API设计最能引导开发者走向最佳实践?
这些问题的探索将继续推动 Angular 响应式编程模型的进化。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
ops-transformer本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
deepin linux kernel
C
23
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
232
2.32 K
仓颉编译器源码及 cjdb 调试工具。
C++
113
78
暂无简介
Dart
534
117
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
76
106
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588
仓颉编程语言测试用例。
Cangjie
34
61
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648