NgRx Signals 中引入 `watch` 函数的技术探讨
2025-05-28 23:30:28作者:谭伦延
在 Angular 生态系统中,响应式编程一直是核心话题。随着 Angular 16 引入 Signals 作为响应式原语,开发者们开始探索如何更优雅地处理状态变化和副作用。NgRx 团队近期提出了一个有趣的技术讨论:在 @ngrx/signals 包中引入 watch 函数,作为对 Angular 原生 effect 的补充方案。
背景:Angular 的 effect 机制
Angular 提供了 effect 函数来处理信号变化的副作用。其核心特点是自动依赖追踪——任何在 effect 回调中同步读取的信号都会自动成为依赖项,当这些信号变化时,effect 会重新执行。
const count = signal(0);
effect(() => {
console.log('count value', count());
});
这种隐式依赖追踪虽然强大,但在实际开发中却存在几个显著问题:
- 异步依赖丢失:如果在异步操作中读取信号值,依赖关系不会被自动追踪
- 依赖排除困难:需要使用
untracked函数来避免不必要的依赖 - 隐式依赖陷阱:任何同步调用的函数中读取的信号都会成为依赖
watch 函数的设计理念
watch 函数的核心思想是显式依赖声明。开发者需要明确指定要监听的信号,回调函数不在响应式上下文中执行,从而避免了隐式依赖的问题。
基本用法:
const count = signal(0);
watch(count, (value) => {
console.log('count value', value);
});
多信号监听:
const count1 = signal(10);
const count2 = signal(100);
watch(count1, count2, (val1, val2) => {
console.log(val1 + val2);
});
清理机制:
watch(count, () => {
console.log('count changed', count());
return () => console.log('cleanup');
});
技术对比:effect vs watch
| 特性 | effect |
watch |
|---|---|---|
| 依赖追踪方式 | 隐式自动追踪 | 显式声明 |
| 响应式上下文 | 在响应式上下文中执行 | 在普通上下文中执行 |
| 异步依赖处理 | 需要同步读取信号 | 无此限制 |
| 排除依赖 | 需要使用 untracked |
自动排除未声明的信号 |
| 代码可预测性 | 较低(依赖隐式追踪) | 较高(依赖显式声明) |
设计讨论与社区观点
这一技术讨论引发了 Angular 社区的广泛关注,主要观点分为两派:
支持方认为:
- 显式声明使代码更可预测和可维护
- 解决了
effect的隐式依赖陷阱问题 - 与其他框架(如 Vue、SolidJS)的设计一致
反对方担忧:
- 增加 API 复杂度,可能造成选择困难
- 显式声明会增加样板代码
- 可能被滥用,导致不良实践
- 核心问题应该是减少副作用的使用
实际应用场景分析
-
UI 状态同步:当需要将信号状态同步到非响应式UI库时,
watch的显式声明更安全 -
性能敏感操作:对于只在特定信号变化时才需要执行的昂贵操作,
watch能精确控制 -
第三方集成:与非 Signals 系统集成时,显式依赖更可靠
-
组合式工具函数:构建可复用的工具函数时,避免隐式依赖更可控
最佳实践建议
- 优先选择:简单场景用
effect,复杂依赖用watch - 副作用最小化:无论哪种方式,都应保持副作用精简
- 组合使用:可以将
watch与computed结合使用 - 明确边界:在组件与服务间建立清晰的响应式边界
未来展望
这一讨论反映了响应式编程领域的一个永恒课题:如何在便利性与可控性之间找到平衡。无论 watch 是否最终被纳入 NgRx,它提出的问题都值得每一位 Angular 开发者思考:
- 我们如何更好地管理响应式依赖?
- 如何在框架提供的便利性与代码的可维护性之间取得平衡?
- 什么样的API设计最能引导开发者走向最佳实践?
这些问题的探索将继续推动 Angular 响应式编程模型的进化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251