NgRx Signals 中注入上下文到 onDestroy 的设计思考
在 NgRx Signals 项目中,开发者们正在讨论如何为 onDestroy 生命周期钩子提供依赖注入(DI)上下文的最佳实践。这一技术决策关系到信号存储(Signal Store)的生命周期管理方式,值得深入探讨。
背景与挑战
在 Angular 生态系统中,依赖注入是一个核心特性。然而,当涉及到生命周期钩子时,特别是在信号存储的上下文中,如何优雅地处理依赖注入成为了一个技术挑战。当前面临的主要问题是:onDestroy 钩子需要在注入上下文之外运行,这限制了开发者直接使用 inject() 函数获取服务的能力。
两种设计方案
社区提出了两种主要的设计方案:
方案一:"Svelte 风格"闭包方式
withHooks((store) => {
  const service = inject(SomeService);
  // 初始化逻辑
  
  return () => {
    service.doSomethingAtTheEnd();
  }
})
方案二:显式生命周期钩子对象
withHooks((store) => {
  const service = inject(SomeService);
  
  return {
    onInit() {
      service.doSomethingAtTheStart();
    },
    onDestroy() {
      service.doSomethingAtTheEnd();
    }
  }
})
方案对比与技术考量
- 
一致性原则:方案二与 NgRx Signals 现有的
withMethods和withComputedAPI 设计风格保持一致,都采用了"DI访问+实现分离"的模式。 - 
扩展性考量:方案二为未来可能添加的其他生命周期钩子(如
onChange)预留了扩展空间,而方案一的闭包方式在这方面显得较为局限。 - 
Angular 生态适配:方案二的
onInit和onDestroy命名与 Angular 组件生命周期钩子保持一致,降低了开发者的认知负担。 - 
技术约束:两种方案都能解决注入上下文的问题,但方案二通过对象属性明确定义了不同生命周期的行为,代码结构更为清晰。
 
实现细节与演进
在技术实现过程中,团队还考虑了以下关键点:
- 
Store 传递方式:最终决定将 store 作为参数传递给
withHooks函数,而不是各个生命周期钩子,这保持了与 Angular 生命周期钩子无参数的设计一致性。 - 
防滥用机制:虽然无法完全防止开发者将初始化逻辑放在错误的位置,但可以通过代码规范和潜在的 lint 规则来引导正确用法。
 - 
类型安全:TypeScript 的类型系统确保了返回对象的正确结构,为开发者提供了良好的类型提示和编译时检查。
 
最佳实践建议
基于这一设计决策,建议开发者在实际项目中:
- 将依赖注入的逻辑集中在 
withHooks的主函数体内 - 将具体的初始化逻辑放在 
onInit方法中 - 清理逻辑应当置于 
onDestroy方法 - 避免在 
withHooks主函数体内直接执行业务逻辑 
这一设计不仅解决了当前的技术挑战,还为 NgRx Signals 未来的功能扩展奠定了良好的基础架构。通过这种方式,开发者可以更自然地管理信号存储的生命周期,同时充分利用 Angular 强大的依赖注入系统。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00