Apache Linkis项目编译过程中Spark引擎模块测试失败问题分析
Apache Linkis作为一个优秀的计算中间件,在编译过程中可能会遇到各种问题。本文针对Linkis 1.1.2版本在Windows环境下使用Maven编译时出现的Spark引擎模块测试失败问题进行分析。
问题现象
开发者在执行mvn clean install命令编译Linkis项目时,发现linkis-engineplugin-spark模块测试失败。错误日志显示测试进程意外终止,具体表现为"VM crash or System.exit called"错误。测试类TestSparkSqlExecutor和TestCSSparkPostExecutionHook在执行过程中崩溃。
根本原因分析
-
测试环境兼容性问题:Linkis的Spark引擎测试用例在Windows环境下可能存在兼容性问题,特别是路径处理和文件系统操作方面。
-
资源限制:测试过程中可能因为内存不足导致JVM崩溃。Windows环境下默认的JVM内存配置可能不足以支持Spark测试用例的运行。
-
测试依赖服务缺失:Spark测试可能需要依赖本地Spark环境或特定配置,而开发环境中可能缺少这些依赖。
-
Jacoco代码覆盖率工具冲突:错误日志显示测试运行时加载了Jacoco代理,这可能会与Spark的某些特性产生冲突。
解决方案
-
跳过测试阶段:对于开发编译场景,可以使用-DskipTests参数跳过测试阶段:
mvn clean install -DskipTests -
单独处理Spark模块:可以先编译其他模块,最后单独处理Spark模块:
mvn -pl '!linkis-engineplugin-spark' clean install -
调整测试配置:在pom.xml中增加测试相关的配置,如超时时间、内存设置等。
-
环境检查:确保本地已安装正确版本的Spark,并且SPARK_HOME环境变量配置正确。
最佳实践建议
-
推荐使用Linux环境:Linkis作为大数据中间件,在Linux环境下开发和测试更为稳定。
-
分模块编译:对于大型项目如Linkis,建议分模块编译以隔离问题。
-
测试资源准备:执行测试前确保必要的测试资源(如Spark本地模式)已就绪。
-
日志分析:遇到测试失败时,应检查target/surefire-reports目录下的详细测试报告。
总结
Linkis项目编译过程中遇到的Spark测试失败问题,通常可以通过跳过测试或环境调整来解决。对于开发者而言,理解项目结构和测试依赖关系非常重要。在实际开发中,根据具体需求选择合适的编译策略,可以显著提高开发效率。
对于需要完整测试覆盖率的场景,建议在专门的CI环境中执行,而不是在本地开发环境。这样可以避免因环境差异导致的各种测试问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00