Pointcept项目中PTv3模型训练内存优化实践
2025-07-04 12:32:33作者:江焘钦
问题背景
在使用Pointcept项目中的PTv3模型进行点云分割任务时,遇到了显存占用过高的问题。具体表现为:当使用4块GPU进行训练,每块GPU的batch size设置为12时,每块GPU的显存占用达到了9GB。即使将voxelization的grid size设置为0.12,仍然面临显存不足的问题,进一步减小grid size会导致CudaOutOfMemory错误。
技术分析
模型配置分析
PTv3模型是Pointcept项目中一个基于点Transformer的点云分割模型。从配置文件中可以看到几个关键参数:
- 模型结构:采用了5层编码器和4层解码器结构
- 通道数:编码器通道数从32递增到512
- 注意力头数:编码器从2头递增到32头
- Patch大小:统一设置为64
- DropPath率:0.3
- 相对位置编码:启用(enable_rpe=True)
- Flash注意力:禁用(enable_flash=False)
数据预处理
数据预处理流程包括:
- 中心化变换(CenterShift)
- 随机丢弃(RandomDropout)
- 多种旋转增强(RandomRotate)
- 随机翻转(RandomFlip)
- 颜色抖动(ChromaticJitter)
- 网格采样(GridSample, grid_size=0.08)
- 归一化(NormalizeColor)
显存占用因素
可能导致显存占用高的几个关键因素:
- 模型参数量:PTv3模型结构较深,特别是编码器部分通道数较大
- 注意力机制:相对位置编码会增加显存消耗
- Batch Size:总batch size为48(4GPU×12)
- 点云数量:单样本最大点数约50k
- Patch Size:设置为64,较大的patch会消耗更多显存
解决方案
经过技术分析,可以采取以下几种优化策略:
- 禁用相对位置编码:设置enable_rpe=False可以显著减少显存占用
- 调整Patch Size:适当减小patch size(如改为32)可以降低显存需求
- 启用混合精度训练:设置enable_amp=True可以利用FP16减少显存
- 优化数据增强:减少一些数据增强操作可以降低显存压力
- 调整模型深度:可以尝试减少编码器/解码器层数
实践建议
对于类似的大规模点云分割任务,建议采取以下实践策略:
- 渐进式调优:从小batch size开始,逐步增加
- 监控显存:训练时实时监控显存使用情况
- 参数权衡:在模型性能和显存占用之间找到平衡点
- 硬件适配:根据GPU显存容量合理配置模型参数
总结
Pointcept项目中的PTv3模型是一个强大的点云分割工具,但在实际应用中需要注意显存优化问题。通过合理配置模型参数和数据预处理流程,可以在保证模型性能的同时有效控制显存占用。特别是对于大规模点云数据,建议重点关注相对位置编码、patch size和batch size等关键参数的设置。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44