Pointcept项目中PTv3模型训练内存优化实践
2025-07-04 10:37:20作者:江焘钦
问题背景
在使用Pointcept项目中的PTv3模型进行点云分割任务时,遇到了显存占用过高的问题。具体表现为:当使用4块GPU进行训练,每块GPU的batch size设置为12时,每块GPU的显存占用达到了9GB。即使将voxelization的grid size设置为0.12,仍然面临显存不足的问题,进一步减小grid size会导致CudaOutOfMemory错误。
技术分析
模型配置分析
PTv3模型是Pointcept项目中一个基于点Transformer的点云分割模型。从配置文件中可以看到几个关键参数:
- 模型结构:采用了5层编码器和4层解码器结构
- 通道数:编码器通道数从32递增到512
- 注意力头数:编码器从2头递增到32头
- Patch大小:统一设置为64
- DropPath率:0.3
- 相对位置编码:启用(enable_rpe=True)
- Flash注意力:禁用(enable_flash=False)
数据预处理
数据预处理流程包括:
- 中心化变换(CenterShift)
- 随机丢弃(RandomDropout)
- 多种旋转增强(RandomRotate)
- 随机翻转(RandomFlip)
- 颜色抖动(ChromaticJitter)
- 网格采样(GridSample, grid_size=0.08)
- 归一化(NormalizeColor)
显存占用因素
可能导致显存占用高的几个关键因素:
- 模型参数量:PTv3模型结构较深,特别是编码器部分通道数较大
- 注意力机制:相对位置编码会增加显存消耗
- Batch Size:总batch size为48(4GPU×12)
- 点云数量:单样本最大点数约50k
- Patch Size:设置为64,较大的patch会消耗更多显存
解决方案
经过技术分析,可以采取以下几种优化策略:
- 禁用相对位置编码:设置enable_rpe=False可以显著减少显存占用
- 调整Patch Size:适当减小patch size(如改为32)可以降低显存需求
- 启用混合精度训练:设置enable_amp=True可以利用FP16减少显存
- 优化数据增强:减少一些数据增强操作可以降低显存压力
- 调整模型深度:可以尝试减少编码器/解码器层数
实践建议
对于类似的大规模点云分割任务,建议采取以下实践策略:
- 渐进式调优:从小batch size开始,逐步增加
- 监控显存:训练时实时监控显存使用情况
- 参数权衡:在模型性能和显存占用之间找到平衡点
- 硬件适配:根据GPU显存容量合理配置模型参数
总结
Pointcept项目中的PTv3模型是一个强大的点云分割工具,但在实际应用中需要注意显存优化问题。通过合理配置模型参数和数据预处理流程,可以在保证模型性能的同时有效控制显存占用。特别是对于大规模点云数据,建议重点关注相对位置编码、patch size和batch size等关键参数的设置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130