AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.31版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,帮助开发者快速部署深度学习应用。这些容器经过AWS优化,可直接在Amazon EC2、Amazon ECS、Amazon EKS等云服务上运行。
近日,AWS发布了PyTorch Graviton推理容器的v1.31版本更新,该版本基于PyTorch 2.3.0构建,专为AWS Graviton处理器优化,适用于CPU推理场景。Graviton是AWS基于ARM架构自主研发的处理器系列,相比传统x86架构,在性价比和能效比方面具有显著优势。
核心特性与技术细节
此版本容器镜像基于Ubuntu 20.04操作系统,预装了Python 3.11环境,主要包含以下关键组件:
-
PyTorch生态系统:
- PyTorch核心库:2.3.0+cpu版本
- TorchVision:0.18.0+cpu
- TorchAudio:2.3.0+cpu
- 模型服务工具链:包括torchserve 0.11.0和torch-model-archiver 0.11.0
-
科学计算与数据处理:
- NumPy 1.26.4
- Pandas 2.2.2
- SciPy 1.14.0
- scikit-learn 1.5.0
- OpenCV-Python 4.10.0.84
-
开发与部署工具:
- AWS CLI 1.33.19
- Boto3 1.34.137
- Cython 3.0.10
- Ninja构建系统 1.11.1.1
性能优化与兼容性
该容器针对Graviton处理器进行了深度优化,充分利用了ARM架构的优势。相比x86架构,Graviton处理器在相同成本下通常能提供更好的性能表现。容器中包含了必要的底层库支持,如:
- GCC编译器相关库(libgcc-10-dev、libgcc-9-dev等)
- C++标准库(libstdc++-10-dev、libstdc++-9-dev等)
这些底层库的优化确保了PyTorch在Graviton处理器上能够发挥最佳性能。同时,容器保持了良好的向后兼容性,可以运行大多数基于PyTorch 2.3.0的模型。
使用场景
这个版本的DLC容器特别适合以下场景:
-
成本敏感型推理服务:Graviton处理器相比传统x86实例通常能提供更好的性价比,适合大规模部署的推理服务。
-
边缘计算场景:ARM架构在能效比方面的优势使其成为边缘设备的理想选择。
-
模型服务化:内置的torchserve和model-archiver工具简化了模型部署和服务化流程。
-
数据预处理流水线:预装的Pandas、NumPy和OpenCV等库为数据预处理提供了完整支持。
总结
AWS Deep Learning Containers的这次更新为使用PyTorch进行CPU推理的用户提供了更多选择,特别是对于那些希望利用Graviton处理器成本优势的用户。容器预装了完整的工具链和依赖库,大大简化了深度学习模型的部署流程,使开发者能够专注于模型本身而非环境配置。
对于已经在使用AWS服务的PyTorch用户,这个容器版本提供了开箱即用的体验;对于考虑迁移到Graviton处理器的用户,这也是一个很好的测试平台。随着ARM生态的不断完善,这类优化容器将在AI推理领域发挥越来越重要的作用。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0111DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









