Automatic项目ONNX模型加载失败问题分析与解决方案
2025-06-04 12:46:32作者:廉彬冶Miranda
问题背景
在使用Automatic项目的ONNX Runtime和Olive实现时,用户遇到了模型加载失败的问题。具体表现为在尝试加载diffusers模型时出现错误,错误信息显示OnnxRawPipeline
初始化不正确,缺少必要的constructor
和path
参数定义。
技术分析
错误根源
从错误日志中可以清晰地看到,问题出在ONNX管道的初始化过程中。系统期望获取constructor
和path
两个关键参数,但实际获取到的参数列表为空。这表明ONNX管道在初始化时未能正确设置这些必要的配置参数。
环境因素
问题发生在Windows平台上,使用Python 3.10.6环境。用户尝试了多个模型(如dreamshaper_8等),均出现相同错误。值得注意的是,问题在用户升级torchvision后开始出现,这提示可能与依赖库版本冲突有关。
关键错误信息
错误日志中明确指出:
ValueError: OnnxRawPipeline {
"_class_name": "OnnxRawPipeline",
"_diffusers_version": "0.27.0"
}
has been incorrectly initialized or <class 'modules.onnx_impl.pipelines.OnnxRawPipeline'> is incorrectly implemented. Expected {'constructor', 'path'} to be defined, but dict_keys([]) are defined.
解决方案
使用开发分支
经过验证,切换到项目的dev分支可以解决此问题。dev分支中可能已经修复了ONNX管道初始化相关的代码。
配置调整
在解决问题过程中,还需要注意以下配置调整:
- 在高级选项中取消勾选"Full quality"选项
- 确保正确设置执行后端为diffusers
- 确认Diffusers管道选择为ONNX Stable Diffusion
环境重建步骤
- 克隆dev分支代码
- 创建并激活虚拟环境
- 安装必要的依赖包
- 确保正确配置ONNX Runtime执行提供程序
- 按照文档指引完成模型编译设置
技术建议
- 版本控制:在使用深度学习项目时,保持对依赖库版本的严格控制,避免随意升级可能导致兼容性问题。
- 分支选择:当遇到稳定分支的问题时,可以尝试切换到开发分支,可能已经包含相关修复。
- 环境隔离:使用虚拟环境可以有效隔离不同项目的依赖,避免冲突。
- 日志分析:遇到问题时,仔细分析错误日志,特别是堆栈跟踪信息,可以快速定位问题根源。
总结
ONNX模型加载失败问题通常与管道初始化参数设置或版本兼容性有关。通过切换到dev分支并调整相关配置,可以有效解决此类问题。对于深度学习开发者而言,理解模型加载流程和参数传递机制,有助于快速诊断和解决类似的技术问题。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3