Automatic项目优化ONNX Runtime依赖管理
2025-06-05 23:35:41作者:乔或婵
在深度学习模型推理领域,ONNX Runtime作为一个高性能的推理引擎,被广泛应用于各种AI框架中。近期,开源项目Automatic针对其ONNX Runtime依赖进行了重要优化,特别增加了对纯CPU版本的支持,这一改进将显著提升项目的兼容性和部署灵活性。
背景与挑战
ONNX Runtime作为微软推出的开源推理引擎,支持多种硬件加速后端,包括CUDA、DirectML、OpenVINO等。然而,在Automatic项目的实际应用中,强制依赖CUDA版本的ONNX Runtime带来了几个关键问题:
- 硬件兼容性问题:并非所有运行环境都配备NVIDIA GPU,特别是在边缘设备和部分云服务器上
- 部署复杂度:CUDA依赖增加了部署的复杂度和系统要求
- 资源占用:CUDA运行时库增加了存储空间和内存占用
技术实现方案
Automatic项目通过引入纯CPU版本的ONNX Runtime依赖,实现了以下技术改进:
- 可选依赖配置:用户现在可以根据运行环境选择安装CUDA版本或CPU版本的ONNX Runtime
- 自动适配机制:系统能够自动检测硬件环境并加载合适的运行时
- 资源优化:在仅使用CPU的场景下,避免了不必要的CUDA相关库的加载
实际应用价值
这一改进为Automatic项目带来了多方面的优势:
-
更广的兼容性:现在可以在没有NVIDIA GPU的设备上运行项目,包括:
- 仅配备Intel/AMD CPU的服务器
- 移动设备和边缘计算节点
- 云服务中的低成本实例
-
简化部署流程:减少了CUDA驱动安装等复杂配置步骤
-
资源效率提升:在不需要GPU加速的场景下,减少了约30%的内存占用
技术细节解析
ONNX Runtime的CPU版本与GPU版本在底层实现上有几个关键区别:
- 算子实现:CPU版本使用高度优化的BLAS库(如MKL、OpenBLAS)进行矩阵运算
- 内存管理:省去了设备内存与主机内存之间的数据传输开销
- 并行处理:依赖OpenMP等CPU并行计算技术而非CUDA核心
未来展望
Automatic项目的这一改进为后续优化奠定了基础,可能的扩展方向包括:
- 多后端支持:集成更多推理后端如TensorRT、OpenVINO等
- 动态切换机制:运行时根据负载自动切换CPU/GPU模式
- 量化支持:结合CPU版本优化8位/16位量化推理
这一依赖管理的优化体现了Automatic项目对用户体验和部署灵活性的重视,将为更广泛的用户群体提供高效的模型推理能力。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147