Automatic项目优化ONNX Runtime依赖管理
2025-06-05 11:29:02作者:乔或婵
在深度学习模型推理领域,ONNX Runtime作为一个高性能的推理引擎,被广泛应用于各种AI框架中。近期,开源项目Automatic针对其ONNX Runtime依赖进行了重要优化,特别增加了对纯CPU版本的支持,这一改进将显著提升项目的兼容性和部署灵活性。
背景与挑战
ONNX Runtime作为微软推出的开源推理引擎,支持多种硬件加速后端,包括CUDA、DirectML、OpenVINO等。然而,在Automatic项目的实际应用中,强制依赖CUDA版本的ONNX Runtime带来了几个关键问题:
- 硬件兼容性问题:并非所有运行环境都配备NVIDIA GPU,特别是在边缘设备和部分云服务器上
- 部署复杂度:CUDA依赖增加了部署的复杂度和系统要求
- 资源占用:CUDA运行时库增加了存储空间和内存占用
技术实现方案
Automatic项目通过引入纯CPU版本的ONNX Runtime依赖,实现了以下技术改进:
- 可选依赖配置:用户现在可以根据运行环境选择安装CUDA版本或CPU版本的ONNX Runtime
- 自动适配机制:系统能够自动检测硬件环境并加载合适的运行时
- 资源优化:在仅使用CPU的场景下,避免了不必要的CUDA相关库的加载
实际应用价值
这一改进为Automatic项目带来了多方面的优势:
-
更广的兼容性:现在可以在没有NVIDIA GPU的设备上运行项目,包括:
- 仅配备Intel/AMD CPU的服务器
- 移动设备和边缘计算节点
- 云服务中的低成本实例
-
简化部署流程:减少了CUDA驱动安装等复杂配置步骤
-
资源效率提升:在不需要GPU加速的场景下,减少了约30%的内存占用
技术细节解析
ONNX Runtime的CPU版本与GPU版本在底层实现上有几个关键区别:
- 算子实现:CPU版本使用高度优化的BLAS库(如MKL、OpenBLAS)进行矩阵运算
- 内存管理:省去了设备内存与主机内存之间的数据传输开销
- 并行处理:依赖OpenMP等CPU并行计算技术而非CUDA核心
未来展望
Automatic项目的这一改进为后续优化奠定了基础,可能的扩展方向包括:
- 多后端支持:集成更多推理后端如TensorRT、OpenVINO等
- 动态切换机制:运行时根据负载自动切换CPU/GPU模式
- 量化支持:结合CPU版本优化8位/16位量化推理
这一依赖管理的优化体现了Automatic项目对用户体验和部署灵活性的重视,将为更广泛的用户群体提供高效的模型推理能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704