Apache Airflow 动态任务映射并发控制问题解析
2025-05-02 09:56:26作者:苗圣禹Peter
在Apache Airflow 3.0.0版本中,开发人员发现了一个关于动态任务映射并发控制的重要问题。该问题涉及max_active_tis_per_dag参数在动态映射任务中未能正确生效的情况,导致任务并发执行数量超出预期限制。
问题背景
动态任务映射是Airflow中一项强大的功能,它允许根据上游任务的输出动态生成多个任务实例。在实际应用中,我们经常需要控制这些动态生成任务的并发执行数量,以避免资源争用或API调用频率限制等问题。
在Airflow 2.10版本中,通过max_active_tis_per_dag参数可以有效地限制任务实例的并发数量。然而,升级到3.0.0版本后,这一机制出现了异常,导致动态映射任务无法遵守设定的并发限制。
问题复现
通过一个简单的DAG示例可以清晰地复现这个问题:
from airflow.sdk import dag, task
@dag
def example_simplest_dag():
@task
def my_task():
return [1, 2, 3, 4, 5, 6, 7]
@task(max_active_tis_per_dag=1)
def map_me_but_slowly(a):
import time
time.sleep(10)
print(a + 1)
map_me_but_slowly.expand(a=my_task())
example_simplest_dag()
按照预期,设置了max_active_tis_per_dag=1后,map_me_but_slowly任务的多个映射实例应该串行执行,每次只运行一个实例。然而在实际运行中,多个实例却同时并行执行,完全忽略了并发限制。
问题根源
经过深入分析,发现问题出在Airflow 3.0.0版本中对动态任务映射的处理逻辑上。具体来说:
- 对于动态映射任务,并发控制参数需要同时在
partial_kwargs中进行检查 - 在3.0.0版本中,这一检查逻辑存在遗漏,导致参数无法正确生效
- 此外,还发现
max_active_tis_per_dagrun参数也存在类似问题,该参数专门用于控制单个DAG运行中动态任务的并发数量
解决方案
针对这一问题,社区开发人员提出了修复方案:
- 完善
partial_kwargs中的参数检查逻辑 - 同时修复
max_active_tis_per_dagrun参数的实现 - 确保两种并发控制参数都能在动态映射任务中正确工作
修复后的行为如下:
max_active_tis_per_dag:限制任务在所有DAG运行中的并发实例总数max_active_tis_per_dagrun:限制单个DAG运行中动态任务的并发数量
验证结果
通过修改后的测试DAG验证修复效果:
from airflow.sdk import dag, task
@dag
def test_dag():
@task
def my_task():
return [1, 2, 3, 4, 5, 6, 7]
@task(max_active_tis_per_dag=1)
def strictly_serial_task(a):
import time
time.sleep(20)
print(a + 1)
@task(max_active_tis_per_dagrun=1)
def dagrun_serial_task(a):
import time
time.sleep(20)
print(a + 1)
dagrun_serial_task.expand(a=my_task())
strictly_serial_task.expand(a=my_task())
test_dag()
测试结果表明:
strictly_serial_task在所有DAG运行中始终保持最多一个实例运行dagrun_serial_task在每个DAG运行中保持最多一个实例运行,但不同DAG运行间的实例可以并行
总结
这个问题的修复对于需要精确控制动态任务并发执行的Airflow用户至关重要。通过正确实现这两个参数,用户可以:
- 防止API调用频率限制
- 避免数据库连接耗尽
- 控制资源使用量
- 实现更精细的任务调度策略
对于从Airflow 2.x升级到3.0的用户,如果依赖动态任务映射的并发控制功能,建议关注此问题的修复进展,或暂时回退到2.10版本。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1