Attack Range项目在AWS环境销毁失败问题分析与解决方案
问题背景
在使用Splunk Attack Range项目时,许多用户在AWS环境中部署成功后,尝试通过python attack_range.py destroy命令销毁环境时遇到了问题。该问题主要出现在Macbook Air M2设备上使用Docker运行Attack Range的场景中,系统在执行销毁操作时返回"Your query returned no results"的错误信息。
错误现象
当用户执行销毁命令时,Terraform会尝试查询AWS AMI镜像,但返回了空结果。错误信息显示在查询linux-server、nginx-server、splunk-server和windows-server模块的AMI时均失败。值得注意的是,其他操作如build、stop、resume和show都能正常执行,唯独destroy操作失败。
问题根源分析
经过深入分析,发现问题出在Terraform的aws_ami数据源查询上。具体原因包括:
- AMI查询条件可能过于严格,导致无法匹配到现有镜像
- 使用了most_recent参数可能导致查询结果不稳定
- AWS区域或账户权限配置可能影响了查询结果
- Packer构建的镜像可能未被正确标记或已过期
解决方案
针对这一问题,可以采用以下解决方案:
方法一:修改Terraform配置文件
- 将所有的
aws_ami数据源替换为aws_ami_ids - 注释掉
most_recent = true语句 - 更新相关模块的资源引用方式
具体修改涉及四个关键文件:
-
linux-server模块:
- 替换data "aws_ami"为data "aws_ami_ids"
- 注释most_recent参数
- 更新ami引用方式
-
nginx-server模块:
- 同样替换数据源类型
- 调整参数配置
- 修正资源引用
-
splunk-server模块:
- 修改数据源定义
- 优化查询条件
- 确保正确引用AMI ID
-
windows-server模块:
- 应用相同修改原则
- 处理多实例情况下的AMI引用
方法二:避免使用Packer
根据项目维护者的建议,未来版本将移除Packer支持。用户可以:
- 直接使用AWS提供的标准AMI
- 通过配置禁用Packer构建的镜像
- 等待官方发布移除Packer后的稳定版本
实施建议
对于急需解决问题的用户,建议采用方法一的修改方案。但需要注意:
- 修改前备份原始配置文件
- 确保对所有相关模块进行一致性修改
- 测试修改后的销毁功能是否正常工作
- 关注项目更新,及时迁移到官方解决方案
技术原理
这种解决方案有效的根本原因在于:
aws_ami_ids提供了更宽松的查询机制,不易返回空结果- 移除
most_recent参数避免了查询结果的不确定性 - 新的引用方式更稳定地获取AMI ID,不受查询条件变化影响
长期展望
随着云计算环境的不断变化,基础设施即代码(IaC)工具需要持续适应云服务商的API变更。Attack Range项目团队已经意识到这一问题,计划在未来版本中简化镜像管理逻辑,移除对Packer的依赖,这将从根本上提高系统的稳定性和可靠性。
对于企业用户,建议关注项目更新路线图,及时升级到稳定版本,同时建立完善的测试流程,确保关键功能在各种场景下都能正常工作。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00