ChipWhisperer 5.7.0版本发布:硬件安全测试工具的重大升级
ChipWhisperer是一个开源的硬件安全测试工具套件,主要用于旁路攻击(如功耗分析攻击)和故障注入攻击的研究。该项目提供了完整的硬件平台和软件工具链,使安全研究人员能够对各种嵌入式设备进行安全评估。最新发布的5.7.0版本带来了多项重要功能增强和问题修复,显著提升了工具的易用性和功能性。
主要新特性
1. 自动化的MPSSE引脚配置
新版本中,当调用enable_MPSSE()方法时,工具会自动设置husky_userio引脚用于MPSSE功能。这一改进简化了硬件接口的配置流程,减少了手动配置可能出现的错误。
2. SAM4S微控制器支持
5.7.0版本新增了对SAM4S系列微控制器的完整支持,包括:
- SAM4S引导加载程序支持,可直接编程SAM4S目标板
- 专门的SAM4S目标硬件抽象层(HAL)
- 通过
openocd/run_openocd.sh脚本简化JTAG/SWD编程和调试流程
3. 增强的故障注入功能
新版本对故障注入系统进行了多项改进:
- 新增
cglitch_setup()、vglitch_setup()和glitch_disable()方法,简化了时钟和电压毛刺的配置流程 - 改进了GlitchController,新增了对毛刺映射(glitch map)的支持
- 针对替换后的CWNano毛刺晶体管优化了性能
- 为Pro系列设备添加了毛刺/时钟AUX输出功能
4. 硬件枚举与设备管理
新增cw.list_devices()功能,可以列出所有连接的NewAE设备,便于用户快速识别和管理多个硬件设备。
5. 构建系统改进
实现了统一的构建系统,支持捕获板、cw305和cw310等不同硬件平台的固件构建,提高了开发效率和一致性。
重要问题修复
-
MPSSE超时问题:修复了CWPro上MPSSE接口可能出现的超时问题,提高了通信稳定性。
-
日志系统改进:改用临时文件处理日志,增强了系统的健壮性。
-
ADC表示修复:修正了nano ADC的
dict_repr表示问题。 -
时钟相位重置:为CWNano新增了
scope.reset_clock_phase()功能。 -
串口通信优化:
- 修复了非simpleserial固件的波特率设置问题
- 修正了FE310在7.37MHz时钟下的波特率设置(现在正确设置为38400bps)
技术细节解析
上下文管理器支持
新版本增加了对Python上下文管理器的支持(通过with语句),这使得资源管理更加安全和方便。例如,现在可以这样使用ChipWhisperer:
with ChipWhisperer() as cw:
# 执行操作
pass
# 离开with块后自动清理资源
这一改进减少了资源泄漏的风险,使代码更加健壮。
毛刺注入系统的改进
新版本的毛刺注入系统提供了更精细的控制能力:
cglitch_setup():快速配置时钟毛刺参数vglitch_setup():快速配置电压毛刺参数glitch_disable():一键禁用所有毛刺注入
这些改进使得进行故障注入实验更加高效,特别适合需要快速迭代测试方案的研究场景。
OpenOCD集成增强
新增的openocd/fe310.cfg配置文件允许通过MPSSE接口对FE310微控制器进行编程,扩展了硬件支持范围。同时改进的OpenOCD脚本使JTAG/SWD调试更加便捷。
总结
ChipWhisperer 5.7.0版本在硬件支持、功能完整性和易用性方面都有显著提升。特别是对SAM4S系列的支持和故障注入系统的改进,使得这个开源硬件安全测试平台能够应对更广泛的研究需求。对于从事嵌入式安全研究的人员来说,这一版本无疑提供了更加强大和便捷的工具集。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00