Stable Diffusion WebUI DirectML 版本中面部修复功能失效问题分析
问题现象
在 Stable Diffusion WebUI DirectML 版本的 1.8.0-RC 更新后,用户反馈启用了"restore faces"(面部修复)功能后,生成的图像没有应用任何面部修正效果。控制台日志显示加载面部修复模型时出现错误,提示"don't know how to restore data location of torch.storage.UntypedStorage"。
技术背景
Stable Diffusion WebUI 的面部修复功能通常依赖于两个主要模型:CodeFormer 和 GFPGAN。这些模型通过深度学习技术对生成的人脸图像进行细节增强和瑕疵修复。在 DirectML 版本中,这些模型需要与 DirectML 后端兼容才能正常工作。
问题原因
根据错误日志分析,问题源于 PyTorch 的存储位置恢复机制与 DirectML 后端的兼容性问题。具体表现为:
- 模型加载过程中,PyTorch 无法正确处理标记为"privateuseone:0"的存储位置
- 这种错误通常发生在尝试将原本为 CUDA 优化的模型加载到非 CUDA 设备时
- DirectML 1.8.0-RC 版本中对模型加载机制进行了修改,导致与面部修复模型不兼容
解决方案
临时解决方案
-
回退到 1.7.0 版本:
- 使用 git 命令回退到稳定版本:
git reset --hard 601f7e3 - 回退前备份重要配置文件(webui-user.bat, config.json, ui-config.json, styles.csv)
- 使用 git 命令回退到稳定版本:
-
使用 CPU 运行面部修复:
- 在 webui-user.bat 启动参数中添加:
--use-cpu gfpgan codeformer - 注意:此方法在低性能 CPU 上可能导致处理速度显著下降
- 在 webui-user.bat 启动参数中添加:
长期解决方案
- 等待官方修复 DirectML 与面部修复模型的兼容性问题
- 考虑使用其他兼容性更好的分支版本,如 SD.Next
技术细节补充
面部修复模型(CodeFormer/GFPGAN)通常包含以下关键组件:
- 特征提取网络:用于识别人脸关键特征
- 生成对抗网络(GAN):用于生成高质量面部细节
- 后处理模块:对生成结果进行平滑和优化
这些模型通常针对特定硬件后端(CUDA)进行优化,在跨平台使用时可能出现兼容性问题。DirectML 作为微软推出的跨平台机器学习框架,在模型兼容性方面仍在不断完善中。
用户建议
-
对于性能较弱的 AMD GCN 架构显卡用户,建议暂时回退到 1.7.0 版本
-
如果必须使用 1.8.0 版本,可以尝试以下优化:
- 降低面部修复强度参数
- 减少同时使用的修复模型数量
- 在生成大尺寸图像时先禁用面部修复,后期在 Extras 中单独处理
-
关注项目更新日志,及时获取官方修复信息
总结
Stable Diffusion WebUI DirectML 版本在 1.8.0-RC 中出现的面部修复功能失效问题,主要源于模型加载机制与 DirectML 后端的兼容性问题。用户可根据自身硬件条件和需求选择合适的临时解决方案,同时期待官方后续的兼容性改进。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00