Stable Diffusion WebUI DirectML 版本中面部修复功能失效问题分析
问题现象
在 Stable Diffusion WebUI DirectML 版本的 1.8.0-RC 更新后,用户反馈启用了"restore faces"(面部修复)功能后,生成的图像没有应用任何面部修正效果。控制台日志显示加载面部修复模型时出现错误,提示"don't know how to restore data location of torch.storage.UntypedStorage"。
技术背景
Stable Diffusion WebUI 的面部修复功能通常依赖于两个主要模型:CodeFormer 和 GFPGAN。这些模型通过深度学习技术对生成的人脸图像进行细节增强和瑕疵修复。在 DirectML 版本中,这些模型需要与 DirectML 后端兼容才能正常工作。
问题原因
根据错误日志分析,问题源于 PyTorch 的存储位置恢复机制与 DirectML 后端的兼容性问题。具体表现为:
- 模型加载过程中,PyTorch 无法正确处理标记为"privateuseone:0"的存储位置
- 这种错误通常发生在尝试将原本为 CUDA 优化的模型加载到非 CUDA 设备时
- DirectML 1.8.0-RC 版本中对模型加载机制进行了修改,导致与面部修复模型不兼容
解决方案
临时解决方案
-
回退到 1.7.0 版本:
- 使用 git 命令回退到稳定版本:
git reset --hard 601f7e3 - 回退前备份重要配置文件(webui-user.bat, config.json, ui-config.json, styles.csv)
- 使用 git 命令回退到稳定版本:
-
使用 CPU 运行面部修复:
- 在 webui-user.bat 启动参数中添加:
--use-cpu gfpgan codeformer - 注意:此方法在低性能 CPU 上可能导致处理速度显著下降
- 在 webui-user.bat 启动参数中添加:
长期解决方案
- 等待官方修复 DirectML 与面部修复模型的兼容性问题
- 考虑使用其他兼容性更好的分支版本,如 SD.Next
技术细节补充
面部修复模型(CodeFormer/GFPGAN)通常包含以下关键组件:
- 特征提取网络:用于识别人脸关键特征
- 生成对抗网络(GAN):用于生成高质量面部细节
- 后处理模块:对生成结果进行平滑和优化
这些模型通常针对特定硬件后端(CUDA)进行优化,在跨平台使用时可能出现兼容性问题。DirectML 作为微软推出的跨平台机器学习框架,在模型兼容性方面仍在不断完善中。
用户建议
-
对于性能较弱的 AMD GCN 架构显卡用户,建议暂时回退到 1.7.0 版本
-
如果必须使用 1.8.0 版本,可以尝试以下优化:
- 降低面部修复强度参数
- 减少同时使用的修复模型数量
- 在生成大尺寸图像时先禁用面部修复,后期在 Extras 中单独处理
-
关注项目更新日志,及时获取官方修复信息
总结
Stable Diffusion WebUI DirectML 版本在 1.8.0-RC 中出现的面部修复功能失效问题,主要源于模型加载机制与 DirectML 后端的兼容性问题。用户可根据自身硬件条件和需求选择合适的临时解决方案,同时期待官方后续的兼容性改进。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00