Hyperparameter-Tuning-with-Python 项目亮点解析
2025-05-17 22:07:53作者:贡沫苏Truman
1. 项目基础介绍
Hyperparameter-Tuning-with-Python 是一个开源项目,由 Packt Publishing 发布。该项目旨在帮助数据科学家和机器学习工程师通过调整超参数来优化机器学习模型的性能。项目基于 Python 语言,提供了多种超参数调整方法,并详细介绍了每种方法的原理和实践。
2. 项目代码目录及介绍
项目代码目录结构清晰,主要包括以下几个部分:
async/:异步编程相关的代码和示例。hyperband/:HyperBand 算法实现的相关代码。mlruns/:存储机器学习运行实验的结果数据。nni/:使用 Neural Network Intelligence (NNI) 进行超参数调整的代码和示例。outputs/:输出结果文件。01_Evaluating-Machine-Learning-Models.ipynb:第1章,评估机器学习模型的 Jupyter Notebook。07_Hyperparameter-Tuning-via-Scikit.ipynb:第7章,通过 Scikit 进行超参数调整的 Jupyter Notebook。08_Hyperparameter-Tuning-via-Hyperopt.ipynb:第8章,通过 Hyperopt 进行超参数调整的 Jupyter Notebook。09_Hyperparameter-Tuning-via-Optuna.ipynb:第9章,通过 Optuna 进行超参数调整的 Jupyter Notebook。10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb:第10章,通过 DEAP 和 Microsoft NNI 进行高级超参数调整的 Jupyter Notebook。13_Tracking_Hyperparameter_Tuning_Experiments.ipynb:第13章,跟踪超参数调整实验的 Jupyter Notebook。LICENSE:项目许可证文件。README.md:项目说明文件。train.csv:训练数据文件。train_optuna.py:使用 Optuna 进行超参数调整的 Python 脚本。
3. 项目亮点功能拆解
- 全面的方法覆盖:项目涵盖了多种超参数调整方法,包括手动搜索、网格搜索、随机搜索、HyperBand、NNI、Optuna 等,为用户提供了丰富的选择。
 - 实践与理论结合:每个方法都有详细的原理介绍和实际代码示例,帮助用户更好地理解并应用这些方法。
 - 跨框架支持:项目支持 Scikit、Hyperopt、Optuna、NNI 和 DEAP 等主流框架,提高了代码的可移植性和适用性。
 
4. 项目主要技术亮点拆解
- HyperBand 算法实现:HyperBand 是一种有效的超参数调整方法,项目中的实现充分考虑了计算效率和结果准确性。
 - NNI 集成:NNI 是一个开源的自动化机器学习工具,项目的集成使其能够利用 NNI 的强大功能进行超参数调整。
 - Optuna 集成:Optuna 是一个用于超参数优化的 Python 库,项目的集成提供了更灵活和高效的超参数搜索策略。
 
5. 与同类项目对比的亮点
- 丰富的文档和示例:Hyperparameter-Tuning-with-Python 提供了详细的文档和丰富的代码示例,帮助用户快速上手和理解。
 - 开源社区支持:作为 Packt Publishing 的项目,Hyperparameter-Tuning-with-Python 享受开源社区的支持,持续更新和改进。
 - 实用性:项目不仅提供了理论知识和代码示例,还提供了可以直接运行的数据集和脚本,使读者能够立即实践所学内容。
 
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446