Hyperparameter-Tuning-with-Python 项目亮点解析
2025-05-17 02:52:14作者:贡沫苏Truman
1. 项目基础介绍
Hyperparameter-Tuning-with-Python 是一个开源项目,由 Packt Publishing 发布。该项目旨在帮助数据科学家和机器学习工程师通过调整超参数来优化机器学习模型的性能。项目基于 Python 语言,提供了多种超参数调整方法,并详细介绍了每种方法的原理和实践。
2. 项目代码目录及介绍
项目代码目录结构清晰,主要包括以下几个部分:
async/:异步编程相关的代码和示例。hyperband/:HyperBand 算法实现的相关代码。mlruns/:存储机器学习运行实验的结果数据。nni/:使用 Neural Network Intelligence (NNI) 进行超参数调整的代码和示例。outputs/:输出结果文件。01_Evaluating-Machine-Learning-Models.ipynb:第1章,评估机器学习模型的 Jupyter Notebook。07_Hyperparameter-Tuning-via-Scikit.ipynb:第7章,通过 Scikit 进行超参数调整的 Jupyter Notebook。08_Hyperparameter-Tuning-via-Hyperopt.ipynb:第8章,通过 Hyperopt 进行超参数调整的 Jupyter Notebook。09_Hyperparameter-Tuning-via-Optuna.ipynb:第9章,通过 Optuna 进行超参数调整的 Jupyter Notebook。10_Advanced_Hyperparameter-Tuning-via-DEAP-and-NNI.ipynb:第10章,通过 DEAP 和 Microsoft NNI 进行高级超参数调整的 Jupyter Notebook。13_Tracking_Hyperparameter_Tuning_Experiments.ipynb:第13章,跟踪超参数调整实验的 Jupyter Notebook。LICENSE:项目许可证文件。README.md:项目说明文件。train.csv:训练数据文件。train_optuna.py:使用 Optuna 进行超参数调整的 Python 脚本。
3. 项目亮点功能拆解
- 全面的方法覆盖:项目涵盖了多种超参数调整方法,包括手动搜索、网格搜索、随机搜索、HyperBand、NNI、Optuna 等,为用户提供了丰富的选择。
- 实践与理论结合:每个方法都有详细的原理介绍和实际代码示例,帮助用户更好地理解并应用这些方法。
- 跨框架支持:项目支持 Scikit、Hyperopt、Optuna、NNI 和 DEAP 等主流框架,提高了代码的可移植性和适用性。
4. 项目主要技术亮点拆解
- HyperBand 算法实现:HyperBand 是一种有效的超参数调整方法,项目中的实现充分考虑了计算效率和结果准确性。
- NNI 集成:NNI 是一个开源的自动化机器学习工具,项目的集成使其能够利用 NNI 的强大功能进行超参数调整。
- Optuna 集成:Optuna 是一个用于超参数优化的 Python 库,项目的集成提供了更灵活和高效的超参数搜索策略。
5. 与同类项目对比的亮点
- 丰富的文档和示例:Hyperparameter-Tuning-with-Python 提供了详细的文档和丰富的代码示例,帮助用户快速上手和理解。
- 开源社区支持:作为 Packt Publishing 的项目,Hyperparameter-Tuning-with-Python 享受开源社区的支持,持续更新和改进。
- 实用性:项目不仅提供了理论知识和代码示例,还提供了可以直接运行的数据集和脚本,使读者能够立即实践所学内容。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350