Hyperparameter-Tuning-with-Python 的安装和配置教程
2025-05-17 12:47:58作者:尤辰城Agatha
1. 项目基础介绍和主要编程语言
Hyperparameter-Tuning-with-Python 是一个开源项目,旨在帮助数据科学家和机器学习工程师通过调整超参数来提升机器学习模型的性能。该项目提供了多种超参数调优方法,包括手动搜索、网格搜索、随机搜索以及一些强大的次优方法。项目主要使用 Python 编程语言,利用了多个流行的机器学习库和框架。
2. 项目使用的关键技术和框架
该项目使用了以下关键技术和框架:
- Scikit-learn:用于数据预处理、模型训练和评估的机器学习库。
 - Hyperopt:一种基于超参数优化的 Python 库,可以通过随机搜索、网格搜索和贝叶斯优化来调整超参数。
 - Optuna:一个超参数优化框架,可以自动调整超参数并优化模型性能。
 - NNI (Neural Network Intelligence):微软开发的超参数优化和神经网络自动化工具。
 - DEAP (Distributed Evolutionary Algorithms in Python):一个用于进化算法的 Python 库。
 
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
在开始安装之前,请确保您的系统中已经安装了以下软件:
- Python 3.7 或更高版本
 - pip(Python 包管理器)
 
安装步骤
- 
克隆项目仓库
打开命令行(Terminal 或 Command Prompt),执行以下命令克隆项目仓库:
git clone https://github.com/PacktPublishing/Hyperparameter-Tuning-with-Python.git - 
安装项目依赖
进入项目目录,安装项目所需的依赖。首先,安装 requirements.txt 文件中列出的依赖:
cd Hyperparameter-Tuning-with-Python pip install -r requirements.txt注意:在 Chapter 8 和 Chapter 10 中,Hyperopt 的版本要求不同。Chapter 8 需要安装 version 0.2.7,而 Chapter 10 需要安装 version 0.1.2。根据您要使用的章节安装相应的版本。
 - 
运行示例代码
项目中的每个章节都有一个对应的 Jupyter Notebook 文件。您可以使用 Jupyter Notebook 打开这些文件并运行示例代码。
在命令行中运行以下命令启动 Jupyter Notebook:
jupyter notebook在浏览器中打开 Jupyter Notebook,然后打开相应章节的 Notebook 文件。
 
以上步骤完成了 Hyperparameter-Tuning-with-Python 项目的安装和配置。现在,您可以开始学习和使用该项目提供的超参数调优方法了。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446