Spring AI 1.0.0-RC1 版本中观测性配置的变更与解决方案
在 Spring AI 1.0.0-RC1 版本中,开发团队对观测性(Observability)相关的配置属性进行了重要调整。这些变更主要影响了聊天模型(Chat Model)和向量存储(Vector Store)的观测行为,需要开发者特别注意。
配置属性变更内容
新版本中,原先的观测性配置属性名称发生了以下变化:
spring.ai.chat.observations.include-prompt变更为spring.ai.chat.observations.log-promptspring.ai.chat.observations.include-completion变更为spring.ai.chat.observations.log-completion- 向量存储相关的观测属性也进行了类似的命名调整
这些变更反映了从"包含"(include)到"记录"(log)的概念转变,更准确地描述了这些属性的实际功能。
实现细节与问题分析
在代码实现层面,ChatObservationProperties类最初未能完全同步这些变更,导致缺少logCompletion字段及其对应的setter方法。同样的问题也出现在VectorStoreObservationProperties类中,缺少logQueryResponse字段。
值得注意的是,虽然属性名称变更了,但观测功能本身仍然正常工作。这是因为这些属性主要用于条件自动配置,而非直接程序化使用。自动配置类中的条件判断已经正确实现了新属性名称的逻辑。
观测模式的变化
1.0.0-RC1版本还引入了一个重要的架构变更:从追踪(Tracing)模式转向日志(Logging)模式。在早期版本中,开发者可以通过Zipkin等追踪服务查看聊天提示和响应内容。新版本改为将这些信息记录到日志中,每个日志条目都包含traceId和spanId,仍然可以与追踪系统关联。
解决方案与替代方案
对于需要恢复追踪功能的开发者,可以考虑以下方案:
-
自定义实现:可以复制早期版本中的
ChatClientPromptContentObservationFilter类,并通过@Component注解使其生效。这种方式允许将大量文本数据附加到追踪span中。 -
使用社区扩展:有开发者已经将移除的处理器和过滤器提取到独立项目中,这些扩展可以恢复原有的追踪功能。
-
日志与追踪集成:利用现代可观测性工具(如支持OpenTelemetry的日志收集器)将日志内容与追踪span关联起来,实现两全其美的解决方案。
最佳实践建议
-
对于新项目,建议适应新的日志模式,利用日志系统强大的查询和分析能力。
-
如果确实需要将大量文本数据附加到追踪span中,应当评估性能影响,考虑仅记录关键摘要信息。
-
在迁移现有项目时,仔细检查所有观测性相关配置,确保使用新属性名称。
-
对于复杂的多AI代理场景,可以结合日志的全文检索能力和追踪的调用链分析,构建更全面的观测体系。
Spring AI团队将持续优化观测性功能,建议开发者关注后续版本的更新和改进。对于特定需求,也可以考虑参与社区讨论或贡献自定义解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00