Spring AI 1.0.0-RC1 版本中观测性配置的变更与解决方案
在 Spring AI 1.0.0-RC1 版本中,开发团队对观测性(Observability)相关的配置属性进行了重要调整。这些变更主要影响了聊天模型(Chat Model)和向量存储(Vector Store)的观测行为,需要开发者特别注意。
配置属性变更内容
新版本中,原先的观测性配置属性名称发生了以下变化:
spring.ai.chat.observations.include-prompt
变更为spring.ai.chat.observations.log-prompt
spring.ai.chat.observations.include-completion
变更为spring.ai.chat.observations.log-completion
- 向量存储相关的观测属性也进行了类似的命名调整
这些变更反映了从"包含"(include)到"记录"(log)的概念转变,更准确地描述了这些属性的实际功能。
实现细节与问题分析
在代码实现层面,ChatObservationProperties
类最初未能完全同步这些变更,导致缺少logCompletion
字段及其对应的setter方法。同样的问题也出现在VectorStoreObservationProperties
类中,缺少logQueryResponse
字段。
值得注意的是,虽然属性名称变更了,但观测功能本身仍然正常工作。这是因为这些属性主要用于条件自动配置,而非直接程序化使用。自动配置类中的条件判断已经正确实现了新属性名称的逻辑。
观测模式的变化
1.0.0-RC1版本还引入了一个重要的架构变更:从追踪(Tracing)模式转向日志(Logging)模式。在早期版本中,开发者可以通过Zipkin等追踪服务查看聊天提示和响应内容。新版本改为将这些信息记录到日志中,每个日志条目都包含traceId和spanId,仍然可以与追踪系统关联。
解决方案与替代方案
对于需要恢复追踪功能的开发者,可以考虑以下方案:
-
自定义实现:可以复制早期版本中的
ChatClientPromptContentObservationFilter
类,并通过@Component
注解使其生效。这种方式允许将大量文本数据附加到追踪span中。 -
使用社区扩展:有开发者已经将移除的处理器和过滤器提取到独立项目中,这些扩展可以恢复原有的追踪功能。
-
日志与追踪集成:利用现代可观测性工具(如支持OpenTelemetry的日志收集器)将日志内容与追踪span关联起来,实现两全其美的解决方案。
最佳实践建议
-
对于新项目,建议适应新的日志模式,利用日志系统强大的查询和分析能力。
-
如果确实需要将大量文本数据附加到追踪span中,应当评估性能影响,考虑仅记录关键摘要信息。
-
在迁移现有项目时,仔细检查所有观测性相关配置,确保使用新属性名称。
-
对于复杂的多AI代理场景,可以结合日志的全文检索能力和追踪的调用链分析,构建更全面的观测体系。
Spring AI团队将持续优化观测性功能,建议开发者关注后续版本的更新和改进。对于特定需求,也可以考虑参与社区讨论或贡献自定义解决方案。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









