首页
/ Ragas项目v0.2.12版本发布:增强评估指标与修复关键问题

Ragas项目v0.2.12版本发布:增强评估指标与修复关键问题

2025-06-06 06:49:57作者:廉彬冶Miranda

Ragas是一个开源的RAG(检索增强生成)评估框架,专注于为检索增强生成系统提供全面的评估指标和方法。该项目旨在帮助开发者和研究人员更好地衡量和优化他们的RAG系统性能。

核心改进

1. 新增Bedrock令牌解析器并修复Anthropic拼写错误

本次更新为AWS Bedrock服务添加了专门的令牌解析器,使Ragas能够更准确地处理来自Bedrock模型的令牌计数。同时修复了Anthropic相关代码中的拼写错误,提升了代码的准确性和一致性。

2. 修正真阳性与假阳性计算错误

开发团队修复了在评估过程中真阳性(TP)和假阳性(FP)计算的一个关键错误。这一修复确保了评估结果的准确性,特别是在处理分类任务时,指标计算将更加可靠。

3. BLEU评分新增可选参数

为BLEU评分算法新增了use_effective_order可选参数。这个改进允许用户根据需要选择是否使用有效n-gram顺序进行计算,为文本相似度评估提供了更大的灵活性。

文档与用户体验优化

1. 文档链接与变量命名一致性改进

团队对文档进行了全面检查,修复了多处损坏的链接,并确保文档中关于evaluator_embeddings变量的命名保持一致。这些改进显著提升了文档的可读性和用户体验。

2. 非LLM上下文精确度指标文档修正

修正了文档中关于NonLLMContextPrecisionWithReference指标的描述,消除了对LLM的错误引用。这一修正确保了文档的准确性,帮助用户正确理解和使用该评估指标。

技术细节修复

1. 输出解析器错误修复

修复了输出解析器中的一个关键bug,该bug可能导致在某些情况下解析结果不准确。这一修复增强了框架的稳定性和可靠性。

2. 规范化URL处理

增加了对规范化URL(canonical_url)的处理支持,这有助于在文档生成和链接处理时保持一致性。

总结

Ragas v0.2.12版本虽然是一个小版本更新,但包含了多项重要的功能改进和错误修复。这些改进不仅增强了框架的功能性,也提升了用户体验和文档质量。特别是对评估指标计算的修正和BLEU评分参数的扩展,将直接提高RAG系统评估的准确性和灵活性。

对于使用Ragas框架的开发者和研究人员来说,升级到这个版本将获得更稳定、更准确的评估体验。项目团队也通过这次更新展示了他们对代码质量和用户体验的持续关注。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K
kernelkernel
deepin linux kernel
C
22
6
pytorchpytorch
Ascend Extension for PyTorch
Python
44
76
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
534
57
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
197
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71