Selenoid UI 使用教程
1. 项目介绍
Selenoid UI 是一个用于 Selenoid 项目的图形用户界面。Selenoid 是一个用于运行 Selenium 测试的轻量级 Docker 容器,而 Selenoid UI 则提供了一个简单直观的界面来监控和管理这些测试会话。通过 Selenoid UI,用户可以实时查看测试状态、会话信息、日志和 VNC 会话,并且可以手动启动浏览器会话进行调试。
2. 项目快速启动
2.1 前提条件
在开始之前,请确保你已经安装了 Docker,并且 Selenoid 已经运行在你的环境中。
2.2 启动 Selenoid UI
你可以通过以下命令快速启动 Selenoid UI:
docker run -d --name selenoid-ui \
--link selenoid \
-p 8080:8080 \
aerokube/selenoid-ui --selenoid-uri=http://selenoid:4444
在这个命令中:
--link selenoid将 Selenoid UI 容器与名为selenoid的容器链接起来。-p 8080:8080将主机的 8080 端口映射到容器的 8080 端口。--selenoid-uri=http://selenoid:4444指定了 Selenoid 的 URI。
启动后,你可以通过访问 http://localhost:8080 来访问 Selenoid UI。
3. 应用案例和最佳实践
3.1 监控测试会话
Selenoid UI 提供了一个实时的状态页面,显示当前的测试会话、队列状态和资源使用情况。你可以通过这个界面监控测试的进度和状态,及时发现并解决问题。
3.2 手动启动浏览器会话
在某些情况下,你可能需要手动启动一个浏览器会话来进行调试。Selenoid UI 提供了一个界面,允许你选择浏览器类型和版本,并手动启动一个会话。这对于调试和验证测试用例非常有用。
3.3 查看日志和 VNC 会话
每个测试会话都会生成日志,Selenoid UI 允许你查看这些日志。此外,如果你在启动会话时启用了 VNC,你还可以通过 Selenoid UI 查看和交互 VNC 会话,实时观察浏览器的行为。
4. 典型生态项目
4.1 Selenoid
Selenoid 是 Selenoid UI 的核心组件,它是一个用于运行 Selenium 测试的轻量级 Docker 容器。Selenoid 支持多种浏览器和版本,并且可以通过简单的配置文件进行管理。
4.2 Ggr
Ggr 是一个用于负载均衡的工具,它可以将多个 Selenoid 实例组合成一个集群,并根据负载情况动态分配测试会话。Ggr 与 Selenoid UI 结合使用,可以实现大规模的分布式测试。
4.3 Moon
Moon 是一个基于 Kubernetes 的 Selenium Grid 替代方案,它提供了更高的可扩展性和灵活性。Moon 与 Selenoid UI 结合使用,可以在 Kubernetes 集群中运行和管理 Selenium 测试。
通过这些生态项目的结合,你可以构建一个强大且灵活的 Selenium 测试环境,满足各种复杂的测试需求。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00