PyTorch Lightning中ModelCheckpoint保存最佳模型的正确使用方式
2025-05-05 19:56:10作者:翟江哲Frasier
在使用PyTorch Lightning进行模型训练时,ModelCheckpoint回调是一个非常重要的工具,它可以帮助我们自动保存训练过程中的模型检查点。然而,许多用户在使用save_top_k参数时会遇到一个常见问题:保存的并不是真正"最好"的模型,而是训练早期的几个模型。
问题现象
当用户设置save_top_k=3时,期望保存验证集上表现最好的3个模型。但实际观察到的却是只保存了epoch 0、1、2的模型,即使后续epoch的模型表现更好也没有被保存。
原因分析
这个问题的根源在于ModelCheckpoint的默认配置。PyTorch Lightning的ModelCheckpoint回调默认使用mode="min",这意味着它会默认监控并最小化某个指标(通常是损失函数)。然而,当用户监控的是准确率(accuracy)这类指标时,我们实际上希望最大化这个指标。
解决方案
正确的做法是在创建ModelCheckpoint时明确指定mode参数:
checkpoint_callback = ModelCheckpoint(
save_top_k=3,
monitor="val_accuracy",
mode="max" # 明确指定为最大化模式
)
这样设置后,回调就会保存验证准确率最高的3个模型检查点,而不是训练早期的模型。
深入理解
ModelCheckpoint的工作原理是维护一个优先队列来跟踪最佳的k个检查点。当mode="max"时,它会保留指标值最大的k个检查点;当mode="min"时,则保留指标值最小的k个检查点。
对于不同类型的指标,我们应该选择不同的mode:
- 对于损失函数(loss):使用mode="min"(默认值)
- 对于准确率(accuracy)、F1分数等:使用mode="max"
最佳实践
- 始终根据监控的指标性质设置正确的mode参数
- 对于分类任务,通常会监控验证准确率,此时应设置mode="max"
- 对于回归任务,通常会监控验证损失,可以使用默认的mode="min"
- 在训练完成后,可以通过
checkpoint_callback.best_model_path获取最佳模型的路径
总结
PyTorch Lightning的ModelCheckpoint回调提供了强大的模型保存功能,但需要正确配置才能发挥最大效用。理解mode参数的作用对于保存真正有价值的模型检查点至关重要。通过本文的介绍,希望读者能够避免这个常见陷阱,更有效地利用PyTorch Lightning进行模型训练和保存。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248