PyTorch Lightning中ModelCheckpoint保存最佳模型的正确使用方式
2025-05-05 10:24:15作者:翟江哲Frasier
在使用PyTorch Lightning进行模型训练时,ModelCheckpoint回调是一个非常重要的工具,它可以帮助我们自动保存训练过程中的模型检查点。然而,许多用户在使用save_top_k参数时会遇到一个常见问题:保存的并不是真正"最好"的模型,而是训练早期的几个模型。
问题现象
当用户设置save_top_k=3时,期望保存验证集上表现最好的3个模型。但实际观察到的却是只保存了epoch 0、1、2的模型,即使后续epoch的模型表现更好也没有被保存。
原因分析
这个问题的根源在于ModelCheckpoint的默认配置。PyTorch Lightning的ModelCheckpoint回调默认使用mode="min",这意味着它会默认监控并最小化某个指标(通常是损失函数)。然而,当用户监控的是准确率(accuracy)这类指标时,我们实际上希望最大化这个指标。
解决方案
正确的做法是在创建ModelCheckpoint时明确指定mode参数:
checkpoint_callback = ModelCheckpoint(
save_top_k=3,
monitor="val_accuracy",
mode="max" # 明确指定为最大化模式
)
这样设置后,回调就会保存验证准确率最高的3个模型检查点,而不是训练早期的模型。
深入理解
ModelCheckpoint的工作原理是维护一个优先队列来跟踪最佳的k个检查点。当mode="max"时,它会保留指标值最大的k个检查点;当mode="min"时,则保留指标值最小的k个检查点。
对于不同类型的指标,我们应该选择不同的mode:
- 对于损失函数(loss):使用mode="min"(默认值)
- 对于准确率(accuracy)、F1分数等:使用mode="max"
最佳实践
- 始终根据监控的指标性质设置正确的mode参数
- 对于分类任务,通常会监控验证准确率,此时应设置mode="max"
- 对于回归任务,通常会监控验证损失,可以使用默认的mode="min"
- 在训练完成后,可以通过
checkpoint_callback.best_model_path获取最佳模型的路径
总结
PyTorch Lightning的ModelCheckpoint回调提供了强大的模型保存功能,但需要正确配置才能发挥最大效用。理解mode参数的作用对于保存真正有价值的模型检查点至关重要。通过本文的介绍,希望读者能够避免这个常见陷阱,更有效地利用PyTorch Lightning进行模型训练和保存。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869