首页
/ 推荐一款新兴的开源异常检测神器——PatchCore

推荐一款新兴的开源异常检测神器——PatchCore

2024-05-21 23:31:23作者:裴麒琰

在数据科学领域,异常检测是至关重要的任务,而PatchCore是一个崭新的开源实现,它声称达到了工业级异常检测的新巅峰。让我们一起深入探讨这个项目,看看它是如何引领潮流的。

项目介绍

PatchCore基于《Towards Total Recall in Industrial Anomaly Detection》这篇论文,由Karsten Roth等人提出,旨在改进现有的异常检测模型,尤其适用于工业环境中的视觉数据。这个开源实现允许开发者轻松地运用该方法,无需复杂的设置,只需几行Python代码即可启动训练或测试。

项目技术分析

PatchCore的核心在于其独特的“局部感知”和“核心集”策略。通过随机投影将图像降维后,选取最接近的邻居构建核心集,从而进行异常检测。这种方法能够在保持高召回率的同时,降低计算复杂性。尽管此实现没有使用原论文中提到的Faiss库进行近邻搜索,但在实践中仍能获得相当高的性能。

应用场景

PatchCore适用于各种场景,特别是那些需要精确检测不常见或异常行为的场合,如:

  1. 工业质量控制:检查产品生产线上的缺陷。
  2. 监控系统:实时识别监控视频中的异常事件。
  3. 医疗影像分析:识别医学图像中的病灶或异常结构。

项目特点

  1. 高效:通过核心集采样策略,即使面对大型数据集也能快速运行。
  2. 可扩展:支持多种数据集,并易于整合到现有工作流中。
  3. 高精度:在MVTec AD数据集上的实验结果显示,无论是图像级别还是像素级别的结果,都达到了非常高的AUROC分数,证明了其强大的检测能力。
  4. 易用性:简洁的API设计使得模型训练与测试变得简单,只需要基本的Python和PyTorch知识即可上手。

总结

PatchCore是一个前沿的开源异常检测模型,结合了创新的算法和高效的实现。无论你是数据科学家,机器学习工程师,还是对异常检测感兴趣的学者,这个项目都值得你尝试。立即安装并开始探索你的数据中隐藏的异常吧!

pip install -r requirements.txt
python train.py --phase train or test --dataset_path .../mvtec_anomaly_detection --category carpet --project_root_path path/to/save/results --coreset_sampling_ratio 0.01 --n_neighbors 9'

期待你在实际应用中发现更多PatchCore的潜力,为你的异常检测任务带来前所未有的解决方案!

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8