LoRA-Scripts项目中的继续训练功能解析与改进方向
2025-06-08 03:34:23作者:蔡丛锟
背景概述
在深度学习模型训练过程中,特别是使用LoRA(Low-Rank Adaptation)技术进行模型微调时,训练过程可能会因为各种原因中断。一个完善的继续训练(resume)功能对于提高训练效率和资源利用率至关重要。在Akegarasu开发的lora-scripts项目中,用户反馈了当前继续训练功能存在的一些使用体验问题。
当前继续训练功能的实现情况
根据用户反馈,目前项目中flux训练部分的继续训练功能已经实现了理想的工作方式:当从第N个epoch恢复训练时,训练会从第N+1个epoch继续,计数也从N开始,直到达到预设的最大训练epoch数(max_train_epochs)。
然而,项目中其他部分的继续训练功能仍存在改进空间。当前实现中,如果从第16个epoch恢复训练,训练会重新从epoch 1开始计数,这导致实际训练的总epoch数变为16+max_train_epochs。这种实现方式不仅会造成计算资源的浪费,还会覆盖之前保存的模型检查点文件(safetensors),给用户带来不便。
理想的继续训练功能设计
一个设计良好的继续训练功能应该具备以下特点:
- epoch计数连续性:恢复训练时应从上次中断的epoch继续计数,而不是重新开始
- 训练总量控制:总训练epoch数应严格等于预设的max_train_epochs
- 检查点管理:恢复训练不应覆盖之前保存的模型文件,而是创建新的版本
- 状态恢复完整性:除了模型参数外,还应恢复优化器状态、学习率调度器等所有训练相关状态
技术实现建议
要实现这样的继续训练功能,开发者需要考虑以下几个方面:
- 训练状态保存:不仅保存模型参数,还需保存当前的epoch计数、优化器状态等元数据
- 恢复逻辑:加载检查点时正确解析中断时的训练状态
- 文件管理:设计合理的文件命名和版本控制策略,避免文件覆盖
- 用户界面:提供清晰的恢复训练进度显示,让用户明确知道当前训练所处阶段
未来改进方向
对于lora-scripts项目的继续训练功能,可以考虑以下改进:
- 统一项目中所有训练方式的继续训练行为,使其与flux训练部分保持一致
- 增加训练中断时的自动状态保存功能
- 提供更详细的恢复训练日志,帮助用户了解恢复过程
- 考虑实现训练进度的可视化展示
结语
继续训练功能是模型训练工具中的重要组成部分,良好的实现可以显著提升用户体验和训练效率。lora-scripts项目已经部分实现了这一功能,通过持续的改进和优化,有望为用户提供更加完善和便捷的训练体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868