LoRA-Scripts项目中的继续训练功能解析与改进方向
2025-06-08 21:00:25作者:蔡丛锟
背景概述
在深度学习模型训练过程中,特别是使用LoRA(Low-Rank Adaptation)技术进行模型微调时,训练过程可能会因为各种原因中断。一个完善的继续训练(resume)功能对于提高训练效率和资源利用率至关重要。在Akegarasu开发的lora-scripts项目中,用户反馈了当前继续训练功能存在的一些使用体验问题。
当前继续训练功能的实现情况
根据用户反馈,目前项目中flux训练部分的继续训练功能已经实现了理想的工作方式:当从第N个epoch恢复训练时,训练会从第N+1个epoch继续,计数也从N开始,直到达到预设的最大训练epoch数(max_train_epochs)。
然而,项目中其他部分的继续训练功能仍存在改进空间。当前实现中,如果从第16个epoch恢复训练,训练会重新从epoch 1开始计数,这导致实际训练的总epoch数变为16+max_train_epochs。这种实现方式不仅会造成计算资源的浪费,还会覆盖之前保存的模型检查点文件(safetensors),给用户带来不便。
理想的继续训练功能设计
一个设计良好的继续训练功能应该具备以下特点:
- epoch计数连续性:恢复训练时应从上次中断的epoch继续计数,而不是重新开始
- 训练总量控制:总训练epoch数应严格等于预设的max_train_epochs
- 检查点管理:恢复训练不应覆盖之前保存的模型文件,而是创建新的版本
- 状态恢复完整性:除了模型参数外,还应恢复优化器状态、学习率调度器等所有训练相关状态
技术实现建议
要实现这样的继续训练功能,开发者需要考虑以下几个方面:
- 训练状态保存:不仅保存模型参数,还需保存当前的epoch计数、优化器状态等元数据
- 恢复逻辑:加载检查点时正确解析中断时的训练状态
- 文件管理:设计合理的文件命名和版本控制策略,避免文件覆盖
- 用户界面:提供清晰的恢复训练进度显示,让用户明确知道当前训练所处阶段
未来改进方向
对于lora-scripts项目的继续训练功能,可以考虑以下改进:
- 统一项目中所有训练方式的继续训练行为,使其与flux训练部分保持一致
- 增加训练中断时的自动状态保存功能
- 提供更详细的恢复训练日志,帮助用户了解恢复过程
- 考虑实现训练进度的可视化展示
结语
继续训练功能是模型训练工具中的重要组成部分,良好的实现可以显著提升用户体验和训练效率。lora-scripts项目已经部分实现了这一功能,通过持续的改进和优化,有望为用户提供更加完善和便捷的训练体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287