首页
/ Akegarasu/lora-scripts项目中LoKR训练时TE模块不训练问题分析

Akegarasu/lora-scripts项目中LoKR训练时TE模块不训练问题分析

2025-06-08 02:23:15作者:凤尚柏Louis

在Akegarasu/lora-scripts项目的1.8.7版本中,用户报告了一个关于LoKR(Low-Rank Knowledge Representation)训练时的技术问题。具体表现为在训练LoKR模型时,文本编码器(Text Encoder,简称TE)模块未能正常参与训练过程,而这一问题在1.8.5和1.8.6版本中并不存在。

问题现象

当用户使用1.8.7版本进行LoKR模型训练时,发现文本编码器模块没有被正确训练。这一现象通过训练日志和模型输出可以明显观察到。值得注意的是,这个问题仅出现在LoKR训练场景下,常规的LoRA训练仍然能够正常工作。

问题定位

通过用户提供的反馈和测试结果,可以初步判断问题与1.8.7版本中使用的sd-scripts组件有关。当用户将项目回退到1.8.6版本或更新到最新的sd-scripts后,问题得到解决,这表明:

  1. 问题很可能出在1.8.7版本集成的特定sd-scripts版本中
  2. 该问题具有版本特异性,不是普遍存在的架构缺陷
  3. 问题影响范围仅限于LoKR训练模式下的文本编码器部分

技术背景

LoKR是一种改进的LoRA(Low-Rank Adaptation)技术,它通过低秩矩阵分解来高效微调大型预训练模型。在稳定扩散(Stable Diffusion)模型中,文本编码器负责将输入文本转换为潜在空间表示,是模型生成质量的关键组件。

正常情况下,LoKR训练应该同时优化UNet和文本编码器两部分。当文本编码器不被训练时,模型将无法根据特定数据调整其文本理解能力,导致生成结果与预期不符。

解决方案

对于遇到此问题的用户,可以采取以下解决方案:

  1. 临时回退到1.8.6版本进行LoKR训练
  2. 更新到最新的sd-scripts组件
  3. 等待官方发布修复后的新版本

预防措施

为避免类似问题,建议开发者和用户:

  1. 在升级版本前,先在测试环境中验证关键功能
  2. 关注项目的更新日志和已知问题列表
  3. 对于重要训练任务,保持稳定的工具链环境

总结

版本迭代过程中的兼容性问题在深度学习工具链开发中较为常见。这次LoKR训练中文本编码器不训练的问题提醒我们,即使是小版本更新也可能引入特定场景下的功能异常。通过社区反馈和及时修复,这类问题通常能够快速解决,确保研究者和开发者能够继续高效地进行模型训练和实验。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
kernelkernel
deepin linux kernel
C
22
5
WxJavaWxJava
微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58