Akegarasu/lora-scripts项目中LoKR训练时TE模块不训练问题分析
2025-06-08 02:23:15作者:凤尚柏Louis
在Akegarasu/lora-scripts项目的1.8.7版本中,用户报告了一个关于LoKR(Low-Rank Knowledge Representation)训练时的技术问题。具体表现为在训练LoKR模型时,文本编码器(Text Encoder,简称TE)模块未能正常参与训练过程,而这一问题在1.8.5和1.8.6版本中并不存在。
问题现象
当用户使用1.8.7版本进行LoKR模型训练时,发现文本编码器模块没有被正确训练。这一现象通过训练日志和模型输出可以明显观察到。值得注意的是,这个问题仅出现在LoKR训练场景下,常规的LoRA训练仍然能够正常工作。
问题定位
通过用户提供的反馈和测试结果,可以初步判断问题与1.8.7版本中使用的sd-scripts组件有关。当用户将项目回退到1.8.6版本或更新到最新的sd-scripts后,问题得到解决,这表明:
- 问题很可能出在1.8.7版本集成的特定sd-scripts版本中
- 该问题具有版本特异性,不是普遍存在的架构缺陷
- 问题影响范围仅限于LoKR训练模式下的文本编码器部分
技术背景
LoKR是一种改进的LoRA(Low-Rank Adaptation)技术,它通过低秩矩阵分解来高效微调大型预训练模型。在稳定扩散(Stable Diffusion)模型中,文本编码器负责将输入文本转换为潜在空间表示,是模型生成质量的关键组件。
正常情况下,LoKR训练应该同时优化UNet和文本编码器两部分。当文本编码器不被训练时,模型将无法根据特定数据调整其文本理解能力,导致生成结果与预期不符。
解决方案
对于遇到此问题的用户,可以采取以下解决方案:
- 临时回退到1.8.6版本进行LoKR训练
- 更新到最新的sd-scripts组件
- 等待官方发布修复后的新版本
预防措施
为避免类似问题,建议开发者和用户:
- 在升级版本前,先在测试环境中验证关键功能
- 关注项目的更新日志和已知问题列表
- 对于重要训练任务,保持稳定的工具链环境
总结
版本迭代过程中的兼容性问题在深度学习工具链开发中较为常见。这次LoKR训练中文本编码器不训练的问题提醒我们,即使是小版本更新也可能引入特定场景下的功能异常。通过社区反馈和及时修复,这类问题通常能够快速解决,确保研究者和开发者能够继续高效地进行模型训练和实验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58