Ragas项目中自定义评分量表的实现与问题分析
2025-05-26 08:49:45作者:蔡丛锟
引言
在Ragas项目的实际应用中,用户经常需要根据特定场景定制评估标准。本文深入探讨了Ragas框架中RubricsScore模块的使用方法,分析了当前版本中存在的评分范围异常问题,并提供了有效的解决方案。
自定义评分量表的基本实现
Ragas框架允许用户通过RubricsScore类创建自定义评估标准。标准的实现方式是通过字典结构定义评分等级及其描述:
rubric = {
"score1_description": "不符合关键指导原则",
"score2_description": "部分符合但存在明显遗漏或误解",
"score3_description": "完全符合指导原则"
}
理论上,这种定义方式应该产生1-3分的评分结果。然而在实际测试中,系统却输出了超出定义范围的分数(如5分甚至8分),这表明当前版本存在评分范围控制的缺陷。
问题现象与复现
多位用户报告了类似的问题现象:
- 定义3级评分标准却得到5分输出
- 定义5级评分标准却得到7分输出
- 极端情况下出现0分或8分等异常值
通过以下测试用例可以稳定复现该问题:
sample = SingleTurnSample(
user_input="西班牙的首都是哪里?",
response="西班牙的首都是马德里。",
reference="西班牙的首都是马德里。"
)
scorer = RubricsScore(rubrics=rubric, llm=evaluator_llm)
score = await scorer.single_turn_ascore(sample) # 预期3分,实际得到5分
技术分析
经过代码审查,发现问题根源在于:
- 评分标准化处理缺失:系统未对LLM输出的原始评分进行范围校验和标准化
- 提示工程不完善:给LLM的评分指令未明确限制输出范围
- 后处理逻辑不足:缺少对异常值的过滤和修正机制
解决方案
目前推荐的临时解决方案包括:
- 明确评分范围提示:在评分标准描述中显式注明范围限制
- 增加后处理校验:对输出分数进行范围检查和修正
- 使用评估数据集方式:通过evaluate方法可能获得更稳定的结果
完整示例:
rubrics = {
"score1_description": "(评分范围1-3)回答不符合参考内容的关键点",
"score2_description": "(评分范围1-3)回答部分符合但存在明显遗漏",
"score3_description": "(评分范围1-3)回答完全符合参考内容"
}
result = evaluate(
dataset=evaluation_dataset,
metrics=[RubricsScore(llm=evaluator_llm, rubrics=rubrics)],
llm=evaluator_llm,
)
最佳实践建议
- 始终在评分描述中明确标注预期范围
- 对输出结果添加合理性检查
- 考虑实现自定义分数映射函数,将异常值转换到有效范围
- 关注项目更新,该问题预计在后续版本中会得到官方修复
结论
Ragas框架的RubricsScore功能为定制化评估提供了强大支持,但当前版本在评分范围控制上存在不足。通过本文介绍的方法,用户可以有效地规避这些问题,获得符合预期的评分结果。随着项目的持续发展,期待官方能够进一步完善这一功能的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19